from dataclasses import asdict
import numpy as np
from data.ModelSlot import DiffusionSVCModelSlot
from mods.log_control import VoiceChangaerLogger
from voice_changer.DiffusionSVC.DiffusionSVCSettings import DiffusionSVCSettings
from voice_changer.DiffusionSVC.inferencer.InferencerManager import InferencerManager
from voice_changer.DiffusionSVC.pipeline.Pipeline import Pipeline
from voice_changer.DiffusionSVC.pipeline.PipelineGenerator import createPipeline
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractorManager import (
    PitchExtractorManager,
)
from voice_changer.ModelSlotManager import ModelSlotManager

from voice_changer.utils.VoiceChangerModel import (
    AudioInOut,
    PitchfInOut,
    FeatureInOut,
    VoiceChangerModel,
)
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager

# from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager

from Exceptions import (
    DeviceCannotSupportHalfPrecisionException,
    PipelineCreateException,
    PipelineNotInitializedException,
)

logger = VoiceChangaerLogger.get_instance().getLogger()


class DiffusionSVC(VoiceChangerModel):
    def __init__(self, params: VoiceChangerParams, slotInfo: DiffusionSVCModelSlot):
        logger.info("[Voice Changer] [DiffusionSVC] Creating instance ")
        self.voiceChangerType = "Diffusion-SVC"
        self.deviceManager = DeviceManager.get_instance()
        EmbedderManager.initialize(params)
        PitchExtractorManager.initialize(params)
        InferencerManager.initialize(params)
        self.settings = DiffusionSVCSettings()
        self.params = params

        self.pipeline: Pipeline | None = None

        self.audio_buffer: AudioInOut | None = None
        self.pitchf_buffer: PitchfInOut | None = None
        self.feature_buffer: FeatureInOut | None = None
        self.prevVol = 0.0
        self.slotInfo = slotInfo

        self.modelSlotManager = ModelSlotManager.get_instance(self.params.model_dir)

    def initialize(self):
        logger.info("[Voice Changer] [DiffusionSVC] Initializing... ")
        self.slotInfo = self.modelSlotManager.get_slot_info(self.slotInfo.slotIndex)

        # pipelineの生成
        try:
            self.pipeline = createPipeline(
                self.slotInfo,
                self.settings.gpu,
                self.settings.f0Detector,
                self.inputSampleRate,
                self.outputSampleRate,
            )
        except PipelineCreateException as e:  # NOQA
            logger.error(
                "[Voice Changer] pipeline create failed. check your model is valid."
            )
            return

        # その他の設定
        self.settings.tran = self.slotInfo.defaultTune
        self.settings.dstId = self.slotInfo.dstId
        self.settings.kStep = self.slotInfo.defaultKstep
        self.settings.speedUp = self.slotInfo.defaultSpeedup

        logger.info("[Voice Changer] [DiffusionSVC] Initializing... done")

    def setSamplingRate(self, inputSampleRate, outputSampleRate):
        self.inputSampleRate = inputSampleRate
        self.outputSampleRate = outputSampleRate
        self.initialize()

    def update_settings(self, key: str, val: int | float | str):
        logger.info(f"[Voice Changer][DiffusionSVC]: update_settings {key}:{val}")
        if key in self.settings.intData:
            setattr(self.settings, key, int(val))
            if key == "gpu":
                self.deviceManager.setForceTensor(False)
                self.initialize()
        elif key in self.settings.floatData:
            setattr(self.settings, key, float(val))
        elif key in self.settings.strData:
            setattr(self.settings, key, str(val))
            if key == "f0Detector" and self.pipeline is not None:
                pitchExtractor = PitchExtractorManager.getPitchExtractor(
                    self.settings.f0Detector, self.settings.gpu
                )
                self.pipeline.setPitchExtractor(pitchExtractor)
        else:
            return False
        return True

    def get_info(self):
        data = asdict(self.settings)
        if self.pipeline is not None:
            pipelineInfo = self.pipeline.getPipelineInfo()
            data["pipelineInfo"] = pipelineInfo
        else:
            data["pipelineInfo"] = "None"
        return data

    def get_processing_sampling_rate(self):
        return self.slotInfo.samplingRate

    def generate_input(
        self,
        newData: AudioInOut,
        crossfadeSize: int,
        solaSearchFrame: int = 0,
    ):
        newData = (
            newData.astype(np.float32) / 32768.0
        )  # DiffusionSVCのモデルのサンプリングレートで入ってきている。(extraDataLength, Crossfade等も同じSRで処理)(★1)
        new_feature_length = int(
            ((newData.shape[0] / self.inputSampleRate) * self.slotInfo.samplingRate)
            / 512
        )  # 100 は hubertのhosizeから (16000 / 160).
        # ↑newData.shape[0]//sampleRate でデータ秒数。これに16000かけてhubertの世界でのデータ長。これにhop数(160)でわるとfeatsのデータサイズになる。
        if self.audio_buffer is not None:
            # 過去のデータに連結
            self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
            self.pitchf_buffer = np.concatenate(
                [self.pitchf_buffer, np.zeros(new_feature_length)], 0
            )
            self.feature_buffer = np.concatenate(
                [
                    self.feature_buffer,
                    np.zeros([new_feature_length, self.slotInfo.embChannels]),
                ],
                0,
            )
        else:
            self.audio_buffer = newData
            self.pitchf_buffer = np.zeros(new_feature_length)
            self.feature_buffer = np.zeros(
                [new_feature_length, self.slotInfo.embChannels]
            )

        convertSize = (
            newData.shape[0]
            + crossfadeSize
            + solaSearchFrame
            + self.settings.extraConvertSize
        )

        if convertSize % 128 != 0:  # モデルの出力のホップサイズで切り捨てが発生するので補う。
            convertSize = convertSize + (128 - (convertSize % 128))

        # バッファがたまっていない場合はzeroで補う
        generateFeatureLength = (
            int(
                ((convertSize / self.inputSampleRate) * self.slotInfo.samplingRate)
                / 512
            )
            + 1
        )
        if self.audio_buffer.shape[0] < convertSize:
            self.audio_buffer = np.concatenate(
                [np.zeros([convertSize]), self.audio_buffer]
            )
            self.pitchf_buffer = np.concatenate(
                [np.zeros(generateFeatureLength), self.pitchf_buffer]
            )
            self.feature_buffer = np.concatenate(
                [
                    np.zeros([generateFeatureLength, self.slotInfo.embChannels]),
                    self.feature_buffer,
                ]
            )

        convertOffset = -1 * convertSize
        featureOffset = -1 * generateFeatureLength
        self.audio_buffer = self.audio_buffer[convertOffset:]  # 変換対象の部分だけ抽出
        self.pitchf_buffer = self.pitchf_buffer[featureOffset:]
        self.feature_buffer = self.feature_buffer[featureOffset:]

        # 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
        cropOffset = -1 * (newData.shape[0] + crossfadeSize)
        cropEnd = -1 * (crossfadeSize)
        crop = self.audio_buffer[cropOffset:cropEnd]
        vol = np.sqrt(np.square(crop).mean())
        vol = float(max(vol, self.prevVol * 0.0))
        self.prevVol = vol

        return (
            self.audio_buffer,
            self.pitchf_buffer,
            self.feature_buffer,
            convertSize,
            vol,
        )

    def inference(
        self, receivedData: AudioInOut, crossfade_frame: int, sola_search_frame: int
    ):
        if self.pipeline is None:
            logger.info("[Voice Changer] Pipeline is not initialized.")
            raise PipelineNotInitializedException()
        data = self.generate_input(receivedData, crossfade_frame, sola_search_frame)
        audio: AudioInOut = data[0]
        pitchf: PitchfInOut = data[1]
        feature: FeatureInOut = data[2]
        convertSize: int = data[3]
        vol: float = data[4]

        if vol < self.settings.silentThreshold:
            return np.zeros(convertSize).astype(np.int16) * np.sqrt(vol)

        if self.pipeline is None:
            return np.zeros(convertSize).astype(np.int16) * np.sqrt(vol)

        # device = self.pipeline.device
        # audio = torch.from_numpy(audio).to(device=device, dtype=torch.float32)
        # audio = self.resampler16K(audio)
        sid = self.settings.dstId
        f0_up_key = self.settings.tran
        protect = 0

        kStep = self.settings.kStep
        speedUp = self.settings.speedUp
        embOutputLayer = 12
        useFinalProj = False
        silenceFrontSec = (
            self.settings.extraConvertSize / self.inputSampleRate
            if self.settings.silenceFront
            else 0.0
        )  # extaraConvertSize(既にモデルのサンプリングレートにリサンプリング済み)の秒数。モデルのサンプリングレートで処理(★1)。

        try:
            audio_out, self.pitchf_buffer, self.feature_buffer = self.pipeline.exec(
                sid,
                audio,
                self.inputSampleRate,
                pitchf,
                feature,
                f0_up_key,
                kStep,
                speedUp,
                silenceFrontSec,
                embOutputLayer,
                useFinalProj,
                protect,
                skip_diffusion=self.settings.skipDiffusion,
            )
            result = audio_out.detach().cpu().numpy()
            return result
        except DeviceCannotSupportHalfPrecisionException as e:  # NOQA
            logger.warn(
                "[Device Manager] Device cannot support half precision. Fallback to float...."
            )
            self.deviceManager.setForceTensor(True)
            self.initialize()
            # raise e

        return

    def __del__(self):
        del self.pipeline

    # def export2onnx(self):
    #     modelSlot = self.slotInfo

    #     if modelSlot.isONNX:
    #         print("[Voice Changer] export2onnx, No pyTorch filepath.")
    #         return {"status": "ng", "path": ""}

    #     output_file_simple = export2onnx(self.settings.gpu, modelSlot)
    #     return {
    #         "status": "ok",
    #         "path": f"/tmp/{output_file_simple}",
    #         "filename": output_file_simple,
    #     }

    def get_model_current(self):
        return [
            {
                "key": "defaultTune",
                "val": self.settings.tran,
            },
            {
                "key": "dstId",
                "val": self.settings.dstId,
            },
            {
                "key": "defaultKstep",
                "val": self.settings.kStep,
            },
            {
                "key": "defaultSpeedup",
                "val": self.settings.speedUp,
            },
        ]