import sys import os if sys.platform.startswith('darwin'): baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")] if len(baseDir) != 1: print("baseDir should be only one ", baseDir) sys.exit() modulePath = os.path.join(baseDir[0], "so-vits-svc-40") sys.path.append(modulePath) else: sys.path.append("so-vits-svc-40") import io from dataclasses import dataclass, asdict, field from functools import reduce import numpy as np import torch import onnxruntime # onnxruntime.set_default_logger_severity(3) from const import HUBERT_ONNX_MODEL_PATH import pyworld as pw from models import SynthesizerTrn import cluster import utils from fairseq import checkpoint_utils import librosa from Exceptions import NoModeLoadedException providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"] @dataclass class SoVitsSvc40Settings(): gpu: int = 0 dstId: int = 0 f0Detector: str = "dio" # dio or harvest tran: int = 20 noiceScale: float = 0.3 predictF0: int = 0 # 0:False, 1:True silentThreshold: float = 0.00001 extraConvertSize: int = 1024 * 32 clusterInferRatio: float = 0.1 framework: str = "PyTorch" # PyTorch or ONNX pyTorchModelFile: str = "" onnxModelFile: str = "" configFile: str = "" speakers: dict[str, int] = field( default_factory=lambda: {} ) # ↓mutableな物だけ列挙 intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize"] floatData = ["noiceScale", "silentThreshold", "clusterInferRatio"] strData = ["framework", "f0Detector"] class SoVitsSvc40: def __init__(self, params): self.settings = SoVitsSvc40Settings() self.net_g = None self.onnx_session = None self.raw_path = io.BytesIO() self.gpu_num = torch.cuda.device_count() self.prevVol = 0 self.params = params print("so-vits-svc40 initialization:", params) # def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None, clusterTorchModel: str = None): def loadModel(self, props): self.settings.configFile = props["files"]["configFilename"] self.hps = utils.get_hparams_from_file(self.settings.configFile) self.settings.speakers = self.hps.spk self.settings.pyTorchModelFile = props["files"]["pyTorchModelFilename"] self.settings.onnxModelFile = props["files"]["onnxModelFilename"] clusterTorchModel = props["files"]["clusterTorchModelFilename"] # hubert model try: hubert_path = self.params["hubert"] useHubertOnnx = self.params["useHubertOnnx"] self.useHubertOnnx = useHubertOnnx if useHubertOnnx == True: ort_options = onnxruntime.SessionOptions() ort_options.intra_op_num_threads = 8 self.hubert_onnx = onnxruntime.InferenceSession( HUBERT_ONNX_MODEL_PATH, providers=providers ) else: models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [hubert_path], suffix="", ) model = models[0] model.eval() self.hubert_model = model.cpu() except Exception as e: print("EXCEPTION during loading hubert/contentvec model", e) # cluster try: if clusterTorchModel != None and os.path.exists(clusterTorchModel): self.cluster_model = cluster.get_cluster_model(clusterTorchModel) else: self.cluster_model = None except Exception as e: print("EXCEPTION during loading cluster model ", e) # PyTorchモデル生成 if self.settings.pyTorchModelFile != None: self.net_g = SynthesizerTrn( self.hps.data.filter_length // 2 + 1, self.hps.train.segment_size // self.hps.data.hop_length, **self.hps.model ) self.net_g.eval() utils.load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None) # ONNXモデル生成 if self.settings.onnxModelFile != None: ort_options = onnxruntime.SessionOptions() ort_options.intra_op_num_threads = 8 self.onnx_session = onnxruntime.InferenceSession( self.settings.onnxModelFile, providers=providers ) # input_info = self.onnx_session.get_inputs() # for i in input_info: # print("input", i) # output_info = self.onnx_session.get_outputs() # for i in output_info: # print("output", i) return self.get_info() def update_settings(self, key: str, val: any): if key == "onnxExecutionProvider" and self.onnx_session != None: if val == "CUDAExecutionProvider": if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num: self.settings.gpu = 0 provider_options = [{'device_id': self.settings.gpu}] self.onnx_session.set_providers(providers=[val], provider_options=provider_options) if hasattr(self, "hubert_onnx"): self.hubert_onnx.set_providers(providers=[val], provider_options=provider_options) else: self.onnx_session.set_providers(providers=[val]) if hasattr(self, "hubert_onnx"): self.hubert_onnx.set_providers(providers=[val]) elif key == "onnxExecutionProvider" and self.onnx_session == None: print("Onnx is not enabled. Please load model.") return False elif key in self.settings.intData: setattr(self.settings, key, int(val)) if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None: providers = self.onnx_session.get_providers() print("Providers:", providers) if "CUDAExecutionProvider" in providers: provider_options = [{'device_id': self.settings.gpu}] self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options) elif key in self.settings.floatData: setattr(self.settings, key, float(val)) elif key in self.settings.strData: setattr(self.settings, key, str(val)) else: return False return True def get_info(self): data = asdict(self.settings) data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else [] files = ["configFile", "pyTorchModelFile", "onnxModelFile"] for f in files: if data[f] != None and os.path.exists(data[f]): data[f] = os.path.basename(data[f]) else: data[f] = "" return data def get_processing_sampling_rate(self): if hasattr(self, "hps") == False: raise NoModeLoadedException("config") return self.hps.data.sampling_rate def get_unit_f0(self, audio_buffer, tran): wav_44k = audio_buffer # f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size) # f0 = utils.compute_f0_dio(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length) if self.settings.f0Detector == "dio": f0 = compute_f0_dio(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length) else: f0 = compute_f0_harvest(wav_44k, sampling_rate=self.hps.data.sampling_rate, hop_length=self.hps.data.hop_length) if wav_44k.shape[0] % self.hps.data.hop_length != 0: print(f" !!! !!! !!! wav size not multiple of hopsize: {wav_44k.shape[0] / self.hps.data.hop_length}") f0, uv = utils.interpolate_f0(f0) f0 = torch.FloatTensor(f0) uv = torch.FloatTensor(uv) f0 = f0 * 2 ** (tran / 12) f0 = f0.unsqueeze(0) uv = uv.unsqueeze(0) # wav16k = librosa.resample(audio_buffer, orig_sr=24000, target_sr=16000) wav16k_numpy = librosa.resample(audio_buffer, orig_sr=self.hps.data.sampling_rate, target_sr=16000) wav16k_tensor = torch.from_numpy(wav16k_numpy) if (self.settings.gpu < 0 or self.gpu_num == 0) or self.settings.framework == "ONNX": dev = torch.device("cpu") else: dev = torch.device("cuda", index=self.settings.gpu) if hasattr(self, "hubert_onnx"): c = self.hubert_onnx.run( ["units"], { "audio": wav16k_numpy.reshape(1, -1), }) c = torch.from_numpy(np.array(c)).squeeze(0).transpose(1, 2) # print("onnx hubert:", self.hubert_onnx.get_providers()) else: if self.hps.model.ssl_dim == 768: self.hubert_model = self.hubert_model.to(dev) wav16k_tensor = wav16k_tensor.to(dev) c = get_hubert_content_layer9(self.hubert_model, wav_16k_tensor=wav16k_tensor) else: self.hubert_model = self.hubert_model.to(dev) wav16k_tensor = wav16k_tensor.to(dev) c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k_tensor) uv = uv.to(dev) f0 = f0.to(dev) c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1]) if self.settings.clusterInferRatio != 0 and hasattr(self, "cluster_model") and self.cluster_model != None: speaker = [key for key, value in self.settings.speakers.items() if value == self.settings.dstId] if len(speaker) != 1: print("not only one speaker found.", speaker) else: cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker[0]).T cluster_c = torch.FloatTensor(cluster_c).to(dev) c = self.settings.clusterInferRatio * cluster_c + (1 - self.settings.clusterInferRatio) * c c = c.unsqueeze(0) return c, f0, uv def generate_input(self, newData: any, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0): newData = newData.astype(np.float32) / self.hps.data.max_wav_value if hasattr(self, "audio_buffer"): self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結 else: self.audio_buffer = newData convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 convertSize = convertSize + (self.hps.data.hop_length - (convertSize % self.hps.data.hop_length)) self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出 crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)] rms = np.sqrt(np.square(crop).mean(axis=0)) vol = max(rms, self.prevVol * 0.0) self.prevVol = vol c, f0, uv = self.get_unit_f0(self.audio_buffer, self.settings.tran) return (c, f0, uv, convertSize, vol) def _onnx_inference(self, data): if hasattr(self, "onnx_session") == False or self.onnx_session == None: print("[Voice Changer] No onnx session.") raise NoModeLoadedException("ONNX") convertSize = data[3] vol = data[4] data = (data[0], data[1], data[2],) if vol < self.settings.silentThreshold: return np.zeros(convertSize).astype(np.int16) c, f0, uv = [x.numpy() for x in data] sid_target = torch.LongTensor([self.settings.dstId]).unsqueeze(0).numpy() audio1 = self.onnx_session.run( ["audio"], { "c": c.astype(np.float32), "f0": f0.astype(np.float32), "uv": uv.astype(np.float32), "g": sid_target.astype(np.int64), "noice_scale": np.array([self.settings.noiceScale]).astype(np.float32), # "predict_f0": np.array([self.settings.dstId]).astype(np.int64), })[0][0, 0] * self.hps.data.max_wav_value audio1 = audio1 * vol result = audio1 return result def _pyTorch_inference(self, data): if hasattr(self, "net_g") == False or self.net_g == None: print("[Voice Changer] No pyTorch session.") raise NoModeLoadedException("pytorch") if self.settings.gpu < 0 or self.gpu_num == 0: dev = torch.device("cpu") else: dev = torch.device("cuda", index=self.settings.gpu) convertSize = data[3] vol = data[4] data = (data[0], data[1], data[2],) if vol < self.settings.silentThreshold: return np.zeros(convertSize).astype(np.int16) with torch.no_grad(): c, f0, uv = [x.to(dev)for x in data] sid_target = torch.LongTensor([self.settings.dstId]).to(dev).unsqueeze(0) self.net_g.to(dev) # audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=True, noice_scale=0.1)[0][0, 0].data.float() predict_f0_flag = True if self.settings.predictF0 == 1 else False audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=predict_f0_flag, noice_scale=self.settings.noiceScale) audio1 = audio1[0][0].data.float() # audio1 = self.net_g.infer(c, f0=f0, g=sid_target, uv=uv, predict_f0=predict_f0_flag, # noice_scale=self.settings.noiceScale)[0][0, 0].data.float() audio1 = audio1 * self.hps.data.max_wav_value audio1 = audio1 * vol result = audio1.float().cpu().numpy() # result = infer_tool.pad_array(result, length) return result def inference(self, data): if self.settings.framework == "ONNX": audio = self._onnx_inference(data) else: audio = self._pyTorch_inference(data) return audio def __del__(self): del self.net_g del self.onnx_session remove_path = os.path.join("so-vits-svc-40") sys.path = [x for x in sys.path if x.endswith(remove_path) == False] for key in list(sys.modules): val = sys.modules.get(key) try: file_path = val.__file__ if file_path.find("so-vits-svc-40" + os.path.sep) >= 0: print("remove", key, file_path) sys.modules.pop(key) except Exception as e: pass def resize_f0(x, target_len): source = np.array(x) source[source < 0.001] = np.nan target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source) res = np.nan_to_num(target) return res def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): if p_len is None: p_len = wav_numpy.shape[0] // hop_length f0, t = pw.dio( wav_numpy.astype(np.double), fs=sampling_rate, f0_ceil=800, frame_period=1000 * hop_length / sampling_rate, ) f0 = pw.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate) for index, pitch in enumerate(f0): f0[index] = round(pitch, 1) return resize_f0(f0, p_len) def compute_f0_harvest(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): if p_len is None: p_len = wav_numpy.shape[0] // hop_length f0, t = pw.harvest(wav_numpy.astype(np.double), fs=sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0) for index, pitch in enumerate(f0): f0[index] = round(pitch, 1) return resize_f0(f0, p_len) def get_hubert_content_layer9(hmodel, wav_16k_tensor): feats = wav_16k_tensor if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) padding_mask = torch.BoolTensor(feats.shape).fill_(False) inputs = { "source": feats.to(wav_16k_tensor.device), "padding_mask": padding_mask.to(wav_16k_tensor.device), "output_layer": 9, # layer 9 } with torch.no_grad(): logits = hmodel.extract_features(**inputs) return logits[0].transpose(1, 2)