from typing import Any, Protocol import torch from torch import device from const import EnumEmbedderTypes class Embedder(Protocol): embedderType: EnumEmbedderTypes = EnumEmbedderTypes.hubert file: str isHalf: bool = True dev: device model: Any | None = None def loadModel(self, file: str, dev: device, isHalf: bool = True): ... def extractFeatures(self, feats: torch.Tensor, embChannels=256) -> torch.Tensor: ... def setProps( self, embedderType: EnumEmbedderTypes, file: str, dev: device, isHalf: bool = True, ): self.embedderType = embedderType self.file = file self.isHalf = isHalf self.dev = dev def setHalf(self, isHalf: bool): self.isHalf = isHalf if self.model is not None and isHalf: self.model = self.model.half() elif self.model is not None and isHalf is False: self.model = self.model.float() def setDevice(self, dev: device): self.dev = dev if self.model is not None: self.model = self.model.to(self.dev) return self def matchCondition(self, embedderType: EnumEmbedderTypes, file: str) -> bool: # Check Type if self.embedderType != embedderType: print( "[Voice Changer] embeder type is not match", self.embedderType, embedderType, ) return False # Check File Path if self.file != file: print( "[Voice Changer] embeder file is not match", self.file, file, ) return False else: return True