import numpy as np from const import PitchExtractorType from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor import torchfcpe class FcpePitchExtractor(PitchExtractor): def __init__(self, gpu: int): super().__init__() self.pitchExtractorType: PitchExtractorType = "fcpe" self.device = DeviceManager.get_instance().getDevice(gpu) self.fcpe = torchfcpe.spawn_bundled_infer_model(self.device) # I merge the code of Voice-Changer-CrepePitchExtractor and RVC-fcpe-infer, sry I don't know how to optimize the function. def extract(self, audio, pitchf, f0_up_key, sr, window, silence_front=0): start_frame = int(silence_front * sr / window) real_silence_front = start_frame * window / sr silence_front_offset = int(np.round(real_silence_front * sr)) audio = audio[silence_front_offset:] f0_min = 50 f0_max = 1100 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) f0 = self.fcpe.infer( audio.to(self.device_fcpe).unsqueeze(0).float(), sr=16000, decoder_mode="local_argmax", threshold=0.006, ) f0 = f0.squeeze() f0 *= pow(2, f0_up_key / 12) pitchf[-f0.shape[0]:] = f0.detach().cpu().numpy()[:pitchf.shape[0]] f0bak = pitchf.copy() f0_mel = 1127.0 * np.log(1.0 + f0bak / 700.0) f0_mel = np.clip( (f0_mel - f0_mel_min) * 254.0 / (f0_mel_max - f0_mel_min) + 1.0, 1.0, 255.0 ) pitch_coarse = f0_mel.astype(int) return pitch_coarse, pitchf