import sys import os from voice_changer.utils.LoadModelParams import LoadModelParams from voice_changer.utils.VoiceChangerModel import AudioInOut if sys.platform.startswith("darwin"): baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")] if len(baseDir) != 1: print("baseDir should be only one ", baseDir) sys.exit() modulePath = os.path.join(baseDir[0], "MMVC_Client_v15", "python") sys.path.append(modulePath) else: modulePath = os.path.join("MMVC_Client_v15", "python") sys.path.append(modulePath) from dataclasses import dataclass, asdict import numpy as np import torch import onnxruntime import pyworld as pw from models import SynthesizerTrn # type:ignore from voice_changer.MMVCv15.client_modules import ( convert_continuos_f0, spectrogram_torch, get_hparams_from_file, load_checkpoint, ) from Exceptions import NoModeLoadedException, ONNXInputArgumentException providers = [ "OpenVINOExecutionProvider", "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider", ] @dataclass class MMVCv15Settings: gpu: int = 0 srcId: int = 0 dstId: int = 101 f0Factor: float = 1.0 f0Detector: str = "dio" # dio or harvest framework: str = "PyTorch" # PyTorch or ONNX pyTorchModelFile: str = "" onnxModelFile: str = "" configFile: str = "" # ↓mutableな物だけ列挙 intData = ["gpu", "srcId", "dstId"] floatData = ["f0Factor"] strData = ["framework", "f0Detector"] class MMVCv15: audio_buffer: AudioInOut | None = None def __init__(self): self.settings = MMVCv15Settings() self.net_g = None self.onnx_session = None self.gpu_num = torch.cuda.device_count() def loadModel(self, props: LoadModelParams): params = props.params self.settings.configFile = params["files"]["mmvcv15Config"] self.hps = get_hparams_from_file(self.settings.configFile) modelFile = params["files"]["mmvcv15Model"] if modelFile.endswith(".onnx"): self.settings.pyTorchModelFile = None self.settings.onnxModelFile = modelFile else: self.settings.pyTorchModelFile = modelFile self.settings.onnxModelFile = None # PyTorchモデル生成 self.net_g = SynthesizerTrn( spec_channels=self.hps.data.filter_length // 2 + 1, segment_size=self.hps.train.segment_size // self.hps.data.hop_length, inter_channels=self.hps.model.inter_channels, hidden_channels=self.hps.model.hidden_channels, upsample_rates=self.hps.model.upsample_rates, upsample_initial_channel=self.hps.model.upsample_initial_channel, upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes, n_flow=self.hps.model.n_flow, dec_out_channels=1, dec_kernel_size=7, n_speakers=self.hps.data.n_speakers, gin_channels=self.hps.model.gin_channels, requires_grad_pe=self.hps.requires_grad.pe, requires_grad_flow=self.hps.requires_grad.flow, requires_grad_text_enc=self.hps.requires_grad.text_enc, requires_grad_dec=self.hps.requires_grad.dec, ) if self.settings.pyTorchModelFile is not None: self.settings.framework = "PyTorch" self.net_g.eval() load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None) # ONNXモデル生成 self.onxx_input_length = 8192 if self.settings.onnxModelFile is not None: self.settings.framework = "ONNX" providers, options = self.getOnnxExecutionProvider() self.onnx_session = onnxruntime.InferenceSession( self.settings.onnxModelFile, providers=providers, provider_options=options, ) inputs_info = self.onnx_session.get_inputs() for i in inputs_info: # print("ONNX INPUT SHAPE", i.name, i.shape) if i.name == "sin": self.onxx_input_length = i.shape[2] return self.get_info() def getOnnxExecutionProvider(self): if self.settings.gpu >= 0: return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}] elif "DmlExecutionProvider" in onnxruntime.get_available_providers(): return ["DmlExecutionProvider"], [] else: return ["CPUExecutionProvider"], [ { "intra_op_num_threads": 8, "execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL, "inter_op_num_threads": 8, } ] def isOnnx(self): if self.settings.onnxModelFile is not None: return True else: return False def update_settings(self, key: str, val: int | float | str): if key in self.settings.intData: val = int(val) setattr(self.settings, key, val) if key == "gpu" and self.isOnnx(): providers, options = self.getOnnxExecutionProvider() self.onnx_session = onnxruntime.InferenceSession( self.settings.onnxModelFile, providers=providers, provider_options=options, ) inputs_info = self.onnx_session.get_inputs() for i in inputs_info: if i.name == "sin": self.onxx_input_length = i.shape[2] elif key in self.settings.floatData: setattr(self.settings, key, float(val)) elif key in self.settings.strData: setattr(self.settings, key, str(val)) else: return False return True def get_info(self): data = asdict(self.settings) data["onnxExecutionProviders"] = ( self.onnx_session.get_providers() if self.settings.onnxModelFile != "" and self.settings.onnxModelFile is not None else [] ) files = ["configFile", "pyTorchModelFile", "onnxModelFile"] for f in files: if data[f] is not None and os.path.exists(data[f]): data[f] = os.path.basename(data[f]) else: data[f] = "" return data def get_processing_sampling_rate(self): if hasattr(self, "hps") is False: raise NoModeLoadedException("config") return self.hps.data.sampling_rate def _get_f0(self, detector: str, newData: AudioInOut): audio_norm_np = newData.astype(np.float64) if detector == "dio": _f0, _time = pw.dio( audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5 ) f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate) else: f0, t = pw.harvest( audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0, ) f0 = convert_continuos_f0( f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length) ) f0 = torch.from_numpy(f0.astype(np.float32)) return f0 def _get_spec(self, newData: AudioInOut): audio = torch.FloatTensor(newData) audio_norm = audio.unsqueeze(0) # unsqueeze spec = spectrogram_torch( audio_norm, self.hps.data.filter_length, self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length, center=False, ) spec = torch.squeeze(spec, 0) return spec def generate_input( self, newData: AudioInOut, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0, ): newData = newData.astype(np.float32) / self.hps.data.max_wav_value if self.audio_buffer is not None: self.audio_buffer = np.concatenate( [self.audio_buffer, newData], 0 ) # 過去のデータに連結 else: self.audio_buffer = newData convertSize = inputSize + crossfadeSize + solaSearchFrame # if convertSize < 8192: # convertSize = 8192 if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 convertSize = convertSize + ( self.hps.data.hop_length - (convertSize % self.hps.data.hop_length) ) # ONNX は固定長 if self.settings.framework == "ONNX": convertSize = self.onxx_input_length convertOffset = -1 * convertSize self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出 f0 = self._get_f0(self.settings.f0Detector, self.audio_buffer) # torch f0 = (f0 * self.settings.f0Factor).unsqueeze(0).unsqueeze(0) spec = self._get_spec(self.audio_buffer) # torch sid = torch.LongTensor([int(self.settings.srcId)]) return [spec, f0, sid] def _onnx_inference(self, data): if self.settings.onnxModelFile == "" and self.settings.onnxModelFile is None: print("[Voice Changer] No ONNX session.") raise NoModeLoadedException("ONNX") spec, f0, sid_src = data spec = spec.unsqueeze(0) spec_lengths = torch.tensor([spec.size(2)]) sid_tgt1 = torch.LongTensor([self.settings.dstId]) sin, d = self.net_g.make_sin_d(f0) (d0, d1, d2, d3) = d audio1 = ( self.onnx_session.run( ["audio"], { "specs": spec.numpy(), "lengths": spec_lengths.numpy(), "sin": sin.numpy(), "d0": d0.numpy(), "d1": d1.numpy(), "d2": d2.numpy(), "d3": d3.numpy(), "sid_src": sid_src.numpy(), "sid_tgt": sid_tgt1.numpy(), }, )[0][0, 0] * self.hps.data.max_wav_value ) return audio1 def _pyTorch_inference(self, data): if ( self.settings.pyTorchModelFile == "" or self.settings.pyTorchModelFile is None ): print("[Voice Changer] No pyTorch session.") raise NoModeLoadedException("pytorch") if self.settings.gpu < 0 or self.gpu_num == 0: dev = torch.device("cpu") else: dev = torch.device("cuda", index=self.settings.gpu) with torch.no_grad(): spec, f0, sid_src = data spec = spec.unsqueeze(0).to(dev) spec_lengths = torch.tensor([spec.size(2)]).to(dev) f0 = f0.to(dev) sid_src = sid_src.to(dev) sid_target = torch.LongTensor([self.settings.dstId]).to(dev) audio1 = ( self.net_g.to(dev) .voice_conversion(spec, spec_lengths, f0, sid_src, sid_target)[0, 0] .data * self.hps.data.max_wav_value ) result = audio1.float().cpu().numpy() return result def inference(self, data): try: if self.isOnnx(): audio = self._onnx_inference(data) else: audio = self._pyTorch_inference(data) return audio except onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument as _e: print(_e) raise ONNXInputArgumentException() def __del__(self): del self.net_g del self.onnx_session remove_path = os.path.join("MMVC_Client_v15", "python") sys.path = [x for x in sys.path if x.endswith(remove_path) is False] for key in list(sys.modules): val = sys.modules.get(key) try: file_path = val.__file__ if file_path.find(remove_path + os.path.sep) >= 0: print("remove", key, file_path) sys.modules.pop(key) except: # type:ignore pass