import numpy as np import torch from voice_changer.DiffusionSVC.inferencer.diffusion_svc_model.diffusion.unit2mel import load_model_vocoder_from_combo from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager class DiffusionSVC_ONNX: def __init__(self, file: str, gpu: int): self.dev = DeviceManager.get_instance().getDevice(gpu) diff_model, diff_args, naive_model, naive_args, vocoder = load_model_vocoder_from_combo(file, device=self.dev) self.diff_model = diff_model self.naive_model = naive_model self.vocoder = vocoder self.diff_args = diff_args self.naive_args = naive_args def forward(self, phone, phone_lengths, sid, max_len=None, convert_length=None): g = self.emb_g(sid).unsqueeze(-1) m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask z = self.flow(z_p, x_mask, g=g, reverse=True) o = self.dec.infer_realtime((z * x_mask)[:, :, :max_len], g=g, convert_length=convert_length) return o, x_mask, (z, z_p, m_p, logs_p) @torch.no_grad() # 最基本推理代码,将输入标准化为tensor,只与mel打交道 def __call__(self, units, f0, volume, spk_id=1, spk_mix_dict=None, aug_shift=0, gt_spec=None, infer_speedup=10, method='dpm-solver', k_step=None, use_tqdm=True, spk_emb=None): aug_shift = torch.from_numpy(np.array([[float(aug_shift)]])).float().to(self.dev) # spk_id spk_emb_dict = None if self.diff_args.model.use_speaker_encoder: # with speaker encoder spk_mix_dict, spk_emb = self.pre_spk_emb(spk_id, spk_mix_dict, len(units), spk_emb) # without speaker encoder else: spk_id = torch.LongTensor(np.array([[int(spk_id)]])).to(self.dev) return self.diff_model(units, f0, volume, spk_id=spk_id, spk_mix_dict=spk_mix_dict, aug_shift=aug_shift, gt_spec=gt_spec, infer=True, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm, spk_emb=spk_emb, spk_emb_dict=spk_emb_dict) @torch.no_grad() def naive_model_call(self, units, f0, volume, spk_id=1, spk_mix_dict=None,aug_shift=0, spk_emb=None): # spk_id spk_emb_dict = None if self.diff_args.model.use_speaker_encoder: # with speaker encoder spk_mix_dict, spk_emb = self.pre_spk_emb(spk_id, spk_mix_dict, len(units), spk_emb) # without speaker encoder else: return out_spec @torch.no_grad() def mel2wav(self, mel, f0, start_frame=0): if start_frame == 0: return self.vocoder.infer(mel, f0) else: # for realtime speedup mel = mel[:, start_frame:, :] f0 = f0[:, start_frame:, :] out_wav = self.vocoder.infer(mel, f0) return torch.nn.functional.pad(out_wav, (start_frame * self.vocoder.vocoder_hop_size, 0)) @torch.no_grad() def infer( self, feats: torch.Tensor, pitch: torch.Tensor, volume: torch.Tensor, mask: torch.Tensor, sid: torch.Tensor, k_step: int, infer_speedup: int, silence_front: float, ) -> torch.Tensor: aug_shift = torch.LongTensor([0]).to(feats.device) out_spec = self.naive_model(feats, pitch, volume, sid, spk_mix_dict=None, aug_shift=aug_shift, infer=True, spk_emb=None, spk_emb_dict=None) gt_spec = self.naive_model_call(feats, pitch, volume, spk_id=sid, spk_mix_dict=None, aug_shift=0, spk_emb=None) out_mel = self.__call__(feats, pitch, volume, spk_id=sid, spk_mix_dict=None, aug_shift=0, gt_spec=gt_spec, infer_speedup=infer_speedup, method='dpm-solver', k_step=k_step, use_tqdm=False, spk_emb=None) start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size) out_wav = self.mel2wav(out_mel, pitch, start_frame=start_frame) out_wav *= mask return out_wav.squeeze()