from typing import Any import math import torch import torch.nn.functional as F from torch.cuda.amp import autocast from Exceptions import ( DeviceCannotSupportHalfPrecisionException, DeviceChangingException, HalfPrecisionChangingException, NotEnoughDataExtimateF0, ) from mods.log_control import VoiceChangaerLogger from voice_changer.RVC.embedder.Embedder import Embedder from voice_changer.RVC.inferencer.Inferencer import Inferencer from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInferencer from voice_changer.RVC.inferencer.OnnxRVCInferencerNono import OnnxRVCInferencerNono from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor from voice_changer.utils.Timer import Timer2 logger = VoiceChangaerLogger.get_instance().getLogger() class Pipeline(object): embedder: Embedder inferencer: Inferencer pitchExtractor: PitchExtractor index: Any | None big_npy: Any | None # feature: Any | None targetSR: int device: torch.device isHalf: bool def __init__( self, embedder: Embedder, inferencer: Inferencer, pitchExtractor: PitchExtractor, targetSR, device, isHalf, ): self.embedder = embedder self.inferencer = inferencer self.pitchExtractor = pitchExtractor logger.info("GENERATE INFERENCER" + str(self.inferencer)) logger.info("GENERATE EMBEDDER" + str(self.embedder)) logger.info("GENERATE PITCH EXTRACTOR" + str(self.pitchExtractor)) self.targetSR = targetSR self.device = device self.isHalf = isHalf self.sr = 16000 self.window = 160 def getPipelineInfo(self): inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {} embedderInfo = self.embedder.getEmbedderInfo() pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo() return {"inferencer": inferencerInfo, "embedder": embedderInfo, "pitchExtractor": pitchExtractorInfo, "isHalf": self.isHalf} def setPitchExtractor(self, pitchExtractor: PitchExtractor): self.pitchExtractor = pitchExtractor def extractPitch(self, audio_pad, if_f0, pitchf, f0_up_key, silence_front): try: if if_f0 == 1: pitch, pitchf = self.pitchExtractor.extract( audio_pad, pitchf, f0_up_key, self.sr, self.window, silence_front=silence_front, ) # pitch = pitch[:p_len] # pitchf = pitchf[:p_len] pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() pitchf = torch.tensor(pitchf, device=self.device, dtype=torch.float).unsqueeze(0) else: pitch = None pitchf = None except IndexError as e: # NOQA print(e) import traceback traceback.print_exc() raise NotEnoughDataExtimateF0() return pitch, pitchf def extractFeatures(self, feats): with autocast(enabled=self.isHalf): try: feats = self.embedder.extractFeatures(feats) if torch.isnan(feats).all(): raise DeviceCannotSupportHalfPrecisionException() return feats except RuntimeError as e: if "HALF" in e.__str__().upper(): raise HalfPrecisionChangingException() elif "same device" in e.__str__(): raise DeviceChangingException() else: raise e def infer(self, feats, p_len, pitch, pitchf, sid, out_size): try: with torch.no_grad(): with autocast(enabled=self.isHalf): audio1 = self.inferencer.infer(feats, p_len, pitch, pitchf, sid, out_size) audio1 = (audio1 * 32767.5).data.to(dtype=torch.int16) return audio1 except RuntimeError as e: if "HALF" in e.__str__().upper(): print("HalfPresicion Error:", e) raise HalfPrecisionChangingException() else: raise e def exec( self, sid, audio, # torch.tensor [n] pitchf, # np.array [m] feature, # np.array [m, feat] f0_up_key, index_rate, if_f0, silence_front, repeat, out_size=None, ): # print(f"pipeline exec input, audio:{audio.shape}, pitchf:{pitchf.shape}, feature:{feature.shape}") # print(f"pipeline exec input, silence_front:{silence_front}, out_size:{out_size}") enablePipelineTimer = False with Timer2("Pipeline-Exec", enablePipelineTimer) as t: # NOQA # 16000のサンプリングレートで入ってきている。以降この世界は16000で処理。 # self.t_pad = self.sr * repeat # 1秒 # self.t_pad_tgt = self.targetSR * repeat # 1秒 出力時のトリミング(モデルのサンプリングで出力される) audio = audio.unsqueeze(0) quality_padding_sec = (repeat * (audio.shape[1] - 1)) / self.sr # padding(reflect)のサイズは元のサイズより小さい必要がある。 self.t_pad = round(self.sr * quality_padding_sec) # 前後に音声を追加 self.t_pad_tgt = round(self.targetSR * quality_padding_sec) # 前後に音声を追加 出力時のトリミング(モデルのサンプリングで出力される) audio_pad = F.pad(audio, (self.t_pad, self.t_pad), mode="reflect").squeeze(0) p_len = audio_pad.shape[0] // self.window sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() # # RVC QualityがOnのときにはsilence_frontをオフに。 # silence_front = silence_front if repeat == 0 else 0 # pitchf = pitchf if repeat == 0 else np.zeros(p_len) # out_size = out_size if repeat == 0 else None # tensor型調整 feats = audio_pad if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) t.record("pre-process") # ピッチ検出 pitch, pitchf = self.extractPitch(audio_pad, if_f0, pitchf, f0_up_key, silence_front) t.record("extract-pitch") # embedding feats = self.extractFeatures(feats) t.record("extract-feats") feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) # if protect < 0.5 and search_index: # feats0 = feats.clone() # ピッチサイズ調整 p_len = audio_pad.shape[0] // self.window if feats.shape[1] < p_len: p_len = feats.shape[1] if pitch is not None and pitchf is not None: pitch = pitch[:, :p_len] pitchf = pitchf[:, :p_len] feats_len = feats.shape[1] if pitch is not None and pitchf is not None: pitch = pitch[:, -feats_len:] pitchf = pitchf[:, -feats_len:] p_len = torch.tensor([feats_len], device=self.device).long() # apply silent front for inference if type(self.inferencer) in [OnnxRVCInferencer, OnnxRVCInferencerNono]: npyOffset = math.floor(silence_front * 16000) // 360 feats = feats[:, npyOffset * 2 :, :] # NOQA feats_len = feats.shape[1] if pitch is not None and pitchf is not None: pitch = pitch[:, -feats_len:] pitchf = pitchf[:, -feats_len:] p_len = torch.tensor([feats_len], device=self.device).long() t.record("mid-precess") # 推論実行 audio1 = self.infer(feats, p_len, pitch, pitchf, sid, out_size) t.record("infer") feats_buffer = feats.squeeze(0).detach().cpu() if pitchf is not None: pitchf_buffer = pitchf.squeeze(0).detach().cpu() else: pitchf_buffer = None del p_len, pitch, pitchf, feats # torch.cuda.empty_cache() # inferで出力されるサンプリングレートはモデルのサンプリングレートになる。 # pipelineに(入力されるときはhubertように16k) if self.t_pad_tgt != 0: offset = self.t_pad_tgt end = -1 * self.t_pad_tgt audio1 = audio1[offset:end] del sid t.record("post-process") # torch.cuda.empty_cache() # print("EXEC AVERAGE:", t.avrSecs) return audio1, pitchf_buffer, feats_buffer def __del__(self): del self.embedder del self.inferencer del self.pitchExtractor print("Pipeline has been deleted")