import torch import numpy as np from const import PitchExtractorType from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor from voice_changer.DiffusionSVC.pitchExtractor.rmvpe.rmvpe import RMVPE from scipy.ndimage import zoom class RMVPEPitchExtractor(PitchExtractor): def __init__(self, file: str, gpu: int): super().__init__() self.pitchExtractorType: PitchExtractorType = "rmvpe" self.f0_min = 50 self.f0_max = 1100 self.sapmle_rate = 16000 self.uv_interp = True if torch.cuda.is_available() and gpu >= 0: self.device = torch.device("cuda:" + str(torch.cuda.current_device())) else: self.device = torch.device("cpu") self.rmvpe = RMVPE(model_path=file, is_half=False, device=self.device) def extract(self, audio: torch.Tensor, pitch, f0_up_key, window, silence_front=0): start_frame = int(silence_front * self.sapmle_rate / window) real_silence_front = start_frame * window / self.sapmle_rate audio = audio[int(np.round(real_silence_front * self.sapmle_rate)):] silented_frames = int(audio.size(0) // window) + 1 print("[RMVPE AUDI]", audio.device) print("[RMVPE RMVPE]", self.rmvpe.device) f0 = self.rmvpe.infer_from_audio_t(audio, thred=0.03) # f0, pd = torchcrepe.predict( # audio.unsqueeze(0), # self.sapmle_rate, # hop_length=window, # fmin=self.f0_min, # fmax=self.f0_max, # # model="tiny", # model="full", # batch_size=256, # decoder=torchcrepe.decode.weighted_argmax, # device=self.device, # return_periodicity=True, # ) # f0 = torchcrepe.filter.median(f0, 3) # 本家だとmeanですが、harvestに合わせmedianフィルタ # pd = torchcrepe.filter.median(pd, 3) # f0[pd < 0.1] = 0 # f0 = f0.squeeze() resize_factor = silented_frames / len(f0) f0 = zoom(f0, resize_factor, order=0) pitch[-f0.shape[0]:] = f0[:pitch.shape[0]] f0 = pitch if self.uv_interp: uv = f0 == 0 if len(f0[~uv]) > 0: f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) f0[f0 < self.f0_min] = self.f0_min f0 = f0 * 2 ** (float(f0_up_key) / 12) return f0