import sys import os import resampy from voice_changer.RVC.ModelWrapper import ModelWrapper from Exceptions import NoModeLoadedException # avoiding parse arg error in RVC sys.argv = ["MMVCServerSIO.py"] if sys.platform.startswith('darwin'): baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")] if len(baseDir) != 1: print("baseDir should be only one ", baseDir) sys.exit() modulePath = os.path.join(baseDir[0], "RVC") sys.path.append(modulePath) else: sys.path.append("RVC") import io from dataclasses import dataclass, asdict, field from functools import reduce import numpy as np import torch import onnxruntime # onnxruntime.set_default_logger_severity(3) from const import HUBERT_ONNX_MODEL_PATH, TMP_DIR import pyworld as pw from voice_changer.RVC.custom_vc_infer_pipeline import VC from infer_pack.models import SynthesizerTrnMs256NSFsid from fairseq import checkpoint_utils providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"] @dataclass class RVCSettings(): gpu: int = 0 dstId: int = 0 f0Detector: str = "dio" # dio or harvest tran: int = 20 noiceScale: float = 0.3 predictF0: int = 0 # 0:False, 1:True silentThreshold: float = 0.00001 extraConvertSize: int = 1024 * 32 clusterInferRatio: float = 0.1 framework: str = "PyTorch" # PyTorch or ONNX pyTorchModelFile: str = "" onnxModelFile: str = "" configFile: str = "" indexRatio: float = 0 rvcQuality: int = 0 modelSamplingRate: int = 48000 speakers: dict[str, int] = field( default_factory=lambda: {} ) # ↓mutableな物だけ列挙 intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize", "rvcQuality", "modelSamplingRate"] floatData = ["noiceScale", "silentThreshold", "indexRatio"] strData = ["framework", "f0Detector"] class RVC: def __init__(self, params): self.settings = RVCSettings() self.net_g = None self.onnx_session = None self.gpu_num = torch.cuda.device_count() self.prevVol = 0 self.params = params self.mps_enabled: bool = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available() print("RVC initialization: ", params) print("mps: ", self.mps_enabled) def loadModel(self, props): self.settings.configFile = props["files"]["configFilename"] self.settings.pyTorchModelFile = props["files"]["pyTorchModelFilename"] self.settings.onnxModelFile = props["files"]["onnxModelFilename"] self.feature_file = props["files"]["featureFilename"] self.index_file = props["files"]["indexFilename"] self.is_half = props["isHalf"] self.slot = props["slot"] print("[Voice Changer] RVC loading... slot:", self.slot) try: hubert_path = self.params["hubert"] models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([hubert_path], suffix="",) model = models[0] model.eval() if self.is_half: model = model.half() self.hubert_model = model except Exception as e: print("EXCEPTION during loading hubert/contentvec model", e) # if pyTorch_model_file != None: # self.settings.pyTorchModelFile = pyTorch_model_file # if onnx_model_file: # self.settings.onnxModelFile = onnx_model_file # PyTorchモデル生成 if self.settings.pyTorchModelFile != None: cpt = torch.load(self.settings.pyTorchModelFile, map_location="cpu") self.settings.modelSamplingRate = cpt["config"][-1] net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=self.is_half) net_g.eval() net_g.load_state_dict(cpt["weight"], strict=False) if self.is_half: net_g = net_g.half() self.net_g = net_g # ONNXモデル生成 if self.settings.onnxModelFile != None: self.onnx_session = ModelWrapper(self.settings.onnxModelFile) return self.get_info() def update_settings(self, key: str, val: any): if key == "onnxExecutionProvider" and self.onnx_session != None: if val == "CUDAExecutionProvider": if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num: self.settings.gpu = 0 provider_options = [{'device_id': self.settings.gpu}] self.onnx_session.set_providers(providers=[val], provider_options=provider_options) if hasattr(self, "hubert_onnx"): self.hubert_onnx.set_providers(providers=[val], provider_options=provider_options) else: self.onnx_session.set_providers(providers=[val]) if hasattr(self, "hubert_onnx"): self.hubert_onnx.set_providers(providers=[val]) elif key == "onnxExecutionProvider" and self.onnx_session == None: print("Onnx is not enabled. Please load model.") return False elif key in self.settings.intData: setattr(self.settings, key, int(val)) if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None: providers = self.onnx_session.get_providers() print("Providers:", providers) if "CUDAExecutionProvider" in providers: provider_options = [{'device_id': self.settings.gpu}] self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options) elif key in self.settings.floatData: setattr(self.settings, key, float(val)) elif key in self.settings.strData: setattr(self.settings, key, str(val)) else: return False return True def get_info(self): data = asdict(self.settings) data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else [] files = ["configFile", "pyTorchModelFile", "onnxModelFile"] for f in files: if data[f] != None and os.path.exists(data[f]): data[f] = os.path.basename(data[f]) else: data[f] = "" return data def get_processing_sampling_rate(self): return self.settings.modelSamplingRate def generate_input(self, newData: any, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0): newData = newData.astype(np.float32) / 32768.0 if hasattr(self, "audio_buffer"): self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結 else: self.audio_buffer = newData convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 convertSize = convertSize + (128 - (convertSize % 128)) self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出 crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)] # 出力部分だけ切り出して音量を確認。(solaとの関係性について、現状は無考慮) rms = np.sqrt(np.square(crop).mean(axis=0)) vol = max(rms, self.prevVol * 0.0) self.prevVol = vol return (self.audio_buffer, convertSize, vol) def _onnx_inference(self, data): if hasattr(self, "onnx_session") == False or self.onnx_session == None: print("[Voice Changer] No onnx session.") raise NoModeLoadedException("ONNX") if self.settings.gpu < 0 or self.gpu_num == 0: dev = torch.device("cpu") else: dev = torch.device("cuda", index=self.settings.gpu) self.hubert_model = self.hubert_model.to(dev) audio = data[0] convertSize = data[1] vol = data[2] audio = resampy.resample(audio, self.settings.modelSamplingRate, 16000) if vol < self.settings.silentThreshold: return np.zeros(convertSize).astype(np.int16) with torch.no_grad(): repeat = 3 if self.is_half else 1 repeat *= self.settings.rvcQuality # 0 or 3 vc = VC(self.settings.modelSamplingRate, dev, self.is_half, repeat) sid = 0 times = [0, 0, 0] f0_up_key = self.settings.tran f0_method = self.settings.f0Detector file_index = self.index_file if self.index_file != None else "" file_big_npy = self.feature_file if self.feature_file != None else "" index_rate = self.settings.indexRatio if_f0 = 1 f0_file = None audio_out = vc.pipeline(self.hubert_model, self.onnx_session, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file) result = audio_out * np.sqrt(vol) return result def _pyTorch_inference(self, data): if hasattr(self, "net_g") == False or self.net_g == None: print("[Voice Changer] No pyTorch session.") raise NoModeLoadedException("pytorch") if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled == False): dev = torch.device("cpu") elif self.mps_enabled: dev = torch.device("mps") else: dev = torch.device("cuda", index=self.settings.gpu) # print("device:", dev) self.hubert_model = self.hubert_model.to(dev) self.net_g = self.net_g.to(dev) audio = data[0] convertSize = data[1] vol = data[2] audio = resampy.resample(audio, self.settings.modelSamplingRate, 16000) if vol < self.settings.silentThreshold: return np.zeros(convertSize).astype(np.int16) with torch.no_grad(): repeat = 3 if self.is_half else 1 repeat *= self.settings.rvcQuality # 0 or 3 vc = VC(self.settings.modelSamplingRate, dev, self.is_half, repeat) sid = 0 times = [0, 0, 0] f0_up_key = self.settings.tran f0_method = "pm" if self.settings.f0Detector == "dio" else "harvest" file_index = self.index_file if self.index_file != None else "" file_big_npy = self.feature_file if self.feature_file != None else "" index_rate = self.settings.indexRatio if_f0 = 1 f0_file = None audio_out = vc.pipeline(self.hubert_model, self.net_g, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file) result = audio_out * np.sqrt(vol) return result def inference(self, data): if self.settings.framework == "ONNX": audio = self._onnx_inference(data) else: audio = self._pyTorch_inference(data) return audio def __del__(self): del self.net_g del self.onnx_session remove_path = os.path.join("RVC") sys.path = [x for x in sys.path if x.endswith(remove_path) == False] for key in list(sys.modules): val = sys.modules.get(key) try: file_path = val.__file__ if file_path.find("RVC" + os.path.sep) >= 0: print("remove", key, file_path) sys.modules.pop(key) except Exception as e: pass def export2onnx(self): if hasattr(self, "net_g") == False or self.net_g == None: print("[Voice Changer] export2onnx, No pyTorch session.") return {"status": "ng", "path": f""} if self.settings.pyTorchModelFile == None: print("[Voice Changer] export2onnx, No pyTorch filepath.") return {"status": "ng", "path": f""} import voice_changer.RVC.export2onnx as onnxExporter output_file = os.path.splitext(os.path.basename(self.settings.pyTorchModelFile))[0] + ".onnx" output_file_simple = os.path.splitext(os.path.basename(self.settings.pyTorchModelFile))[0] + "_simple.onnx" output_path = os.path.join(TMP_DIR, output_file) output_path_simple = os.path.join(TMP_DIR, output_file_simple) if torch.cuda.device_count() > 0: onnxExporter.export2onnx(self.settings.pyTorchModelFile, output_path, output_path_simple, True) else: print("[Voice Changer] Warning!!! onnx export with float32. maybe size is doubled.") onnxExporter.export2onnx(self.settings.pyTorchModelFile, output_path, output_path_simple, False) return {"status": "ok", "path": f"/tmp/{output_file_simple}", "filename": output_file_simple}