from const import EnumEmbedderTypes, EnumInferenceTypes from voice_changer.RVC.ModelSlot import ModelSlot import torch import onnxruntime import json import os def generateModelSlot(slotDir: str): modelSlot = ModelSlot() if os.path.exists(slotDir) is False: return modelSlot paramFile = os.path.join(slotDir, "params.json") with open(paramFile, "r") as f: params = json.load(f) modelSlot.modelFile = os.path.join( slotDir, os.path.basename(params["files"]["rvcModel"]) ) if "rvcFeature" in params["files"]: modelSlot.featureFile = os.path.join( slotDir, os.path.basename(params["files"]["rvcFeature"]) ) else: modelSlot.featureFile = None if "rvcIndex" in params["files"]: modelSlot.indexFile = os.path.join( slotDir, os.path.basename(params["files"]["rvcIndex"]) ) else: modelSlot.indexFile = None modelSlot.defaultTune = params["defaultTune"] if "defaultTune" in params else 0 modelSlot.defaultIndexRatio = ( params["defaultIndexRatio"] if "defaultIndexRatio" in params else 0 ) modelSlot.name = params["name"] if "name" in params else None modelSlot.description = params["description"] if "description" in params else None modelSlot.credit = params["credit"] if "credit" in params else None modelSlot.termsOfUseUrl = ( params["termsOfUseUrl"] if "termsOfUseUrl" in params else None ) modelSlot.isONNX = modelSlot.modelFile.endswith(".onnx") if modelSlot.isONNX: _setInfoByONNX(modelSlot) else: _setInfoByPytorch(modelSlot) return modelSlot def _setInfoByPytorch(slot: ModelSlot): cpt = torch.load(slot.modelFile, map_location="cpu") config_len = len(cpt["config"]) if config_len == 18: # Original RVC slot.f0 = True if cpt["f0"] == 1 else False version = cpt.get("version", "v1") if version is None or version == "v1": slot.modelType = ( EnumInferenceTypes.pyTorchRVC if slot.f0 else EnumInferenceTypes.pyTorchRVCNono ) slot.embChannels = 256 slot.embOutputLayer = 9 slot.useFinalProj = True slot.embedder = EnumEmbedderTypes.hubert else: slot.modelType = ( EnumInferenceTypes.pyTorchRVCv2 if slot.f0 else EnumInferenceTypes.pyTorchRVCv2Nono ) slot.embChannels = 768 slot.embOutputLayer = 12 slot.useFinalProj = False slot.embedder = EnumEmbedderTypes.hubert else: # DDPN RVC slot.f0 = True if cpt["f0"] == 1 else False slot.modelType = ( EnumInferenceTypes.pyTorchWebUI if slot.f0 else EnumInferenceTypes.pyTorchWebUINono ) slot.embChannels = cpt["config"][17] slot.embOutputLayer = ( cpt["embedder_output_layer"] if "embedder_output_layer" in cpt else 9 ) if slot.embChannels == 256: slot.useFinalProj = True else: slot.useFinalProj = False # DDPNモデルの情報を表示 if ( slot.embChannels == 256 and slot.embOutputLayer == 9 and slot.useFinalProj is True ): print("[Voice Changer] DDPN Model: Original v1 like") elif ( slot.embChannels == 768 and slot.embOutputLayer == 12 and slot.useFinalProj is False ): print("[Voice Changer] DDPN Model: Original v2 like") else: print( f"[Voice Changer] DDPN Model: ch:{slot.embChannels}, L:{slot.embOutputLayer}, FP:{slot.useFinalProj}" ) slot.embedder = cpt["embedder_name"] if slot.embedder.endswith("768"): slot.embedder = slot.embedder[:-3] if slot.embedder == EnumEmbedderTypes.hubert.value: slot.embedder = EnumEmbedderTypes.hubert elif slot.embedder == EnumEmbedderTypes.contentvec.value: slot.embedder = EnumEmbedderTypes.contentvec elif slot.embedder == EnumEmbedderTypes.hubert_jp.value: slot.embedder = EnumEmbedderTypes.hubert_jp else: raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder") slot.samplingRate = cpt["config"][-1] del cpt def _setInfoByONNX(slot: ModelSlot): tmp_onnx_session = onnxruntime.InferenceSession( slot.modelFile, providers=["CPUExecutionProvider"] ) modelmeta = tmp_onnx_session.get_modelmeta() try: metadata = json.loads(modelmeta.custom_metadata_map["metadata"]) # slot.modelType = metadata["modelType"] slot.embChannels = metadata["embChannels"] slot.embOutputLayer = ( metadata["embOutputLayer"] if "embOutputLayer" in metadata else 9 ) slot.useFinalProj = ( metadata["useFinalProj"] if "useFinalProj" in metadata else True if slot.embChannels == 256 else False ) if slot.embChannels == 256: slot.useFinalProj = True else: slot.useFinalProj = False # ONNXモデルの情報を表示 if ( slot.embChannels == 256 and slot.embOutputLayer == 9 and slot.useFinalProj is True ): print("[Voice Changer] ONNX Model: Original v1 like") elif ( slot.embChannels == 768 and slot.embOutputLayer == 12 and slot.useFinalProj is False ): print("[Voice Changer] ONNX Model: Original v2 like") else: print( f"[Voice Changer] ONNX Model: ch:{slot.embChannels}, L:{slot.embOutputLayer}, FP:{slot.useFinalProj}" ) if "embedder" not in metadata: slot.embedder = EnumEmbedderTypes.hubert elif metadata["embedder"] == EnumEmbedderTypes.hubert.value: slot.embedder = EnumEmbedderTypes.hubert elif metadata["embedder"] == EnumEmbedderTypes.contentvec.value: slot.embedder = EnumEmbedderTypes.contentvec elif metadata["embedder"] == EnumEmbedderTypes.hubert_jp.value: slot.embedder = EnumEmbedderTypes.hubert_jp else: raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder") slot.f0 = metadata["f0"] slot.modelType = ( EnumInferenceTypes.onnxRVC if slot.f0 else EnumInferenceTypes.onnxRVCNono ) slot.samplingRate = metadata["samplingRate"] slot.deprecated = False except Exception as e: slot.modelType = EnumInferenceTypes.onnxRVC slot.embChannels = 256 slot.embedder = EnumEmbedderTypes.hubert slot.f0 = True slot.samplingRate = 48000 slot.deprecated = True print("[Voice Changer] setInfoByONNX", e) print("[Voice Changer] ############## !!!! CAUTION !!!! ####################") print("[Voice Changer] This onnxfie is depricated. Please regenerate onnxfile.") print("[Voice Changer] ############## !!!! CAUTION !!!! ####################") del tmp_onnx_session