import numpy as np from const import PitchExtractorType from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager import onnxruntime from voice_changer.RVC.pitchExtractor import onnxcrepe from voice_changer.utils.VoiceChangerModel import AudioInOut class CrepeOnnxPitchExtractor(PitchExtractor): def __init__(self, pitchExtractorType: PitchExtractorType, file: str, gpu: int): self.pitchExtractorType = pitchExtractorType super().__init__() ( onnxProviders, onnxProviderOptions, ) = DeviceManager.get_instance().getOnnxExecutionProvider(gpu) self.onnx_session = onnxruntime.InferenceSession( file, providers=onnxProviders, provider_options=onnxProviderOptions ) self.f0_min = 50 self.f0_max = 1100 self.sapmle_rate = 16000 self.uv_interp = True def extract(self, audio: AudioInOut, sr: int, block_size: int, model_sr: int, pitch, f0_up_key, silence_front=0): hop_size = block_size * sr / model_sr offset_frame_number = silence_front * sr start_frame = int(offset_frame_number / hop_size) # frame real_silence_front = start_frame * hop_size / sr # 秒 audio = audio[int(np.round(real_silence_front * sr)):].astype(np.float32) precision = (1000 * hop_size / sr) onnx_f0, onnx_pd = onnxcrepe.predict( self.onnx_session, audio, sr, precision=precision, fmin=self.f0_min, fmax=self.f0_max, batch_size=256, return_periodicity=True, decoder=onnxcrepe.decode.weighted_argmax, ) f0 = onnxcrepe.filter.median(onnx_f0, 3) pd = onnxcrepe.filter.median(onnx_pd, 3) f0[pd < 0.1] = 0 f0 = f0.squeeze() pitch[-f0.shape[0]:] = f0[:pitch.shape[0]] f0 = pitch if self.uv_interp: uv = f0 == 0 if len(f0[~uv]) > 0: f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) f0[f0 < self.f0_min] = self.f0_min f0 = f0 * 2 ** (float(f0_up_key) / 12) return f0