{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyP/3QiGmJfI/yvB8/t/WTXG", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU", "gpuClass": "standard" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "source": [ "MMVCプレイヤー(超簡単版)\n", "---\n", "\n", "このノートはColab上でMMVCのボイチェンを行うノートです。\n", "\n", "正式版はローカルPCのDocker上で動かすアプリケーションです。\n", "\n", "正式版は、多くの場合より少ないタイムラグで滑らかに音声を変換できます。\n", "\n", "詳細な使用方法はこちらの[リポジトリ](https://github.com/w-okada/voice-changer)からご確認ください。\n" ], "metadata": { "id": "Lbbmx_Vjl0zo" } }, { "cell_type": "markdown", "source": [ "# GPUを確認\n", "GPUを用いたほうが高速に処理が行えます。\n", "\n", "下記のコマンドでGPUが確認できない場合は、上のメニューから\n", "\n", "「ランタイム」→「ランタイムの変更」→「ハードウェア アクセラレータ」\n", "\n", "でGPUを選択してください。" ], "metadata": { "id": "oUKi1NYMmXrr" } }, { "cell_type": "code", "source": [ "# (1) GPUの確認\n", "!nvidia-smi" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vV1t7PBRm-o6", "outputId": "cd968cbb-6749-4d64-c524-364bbccfbaaf" }, "execution_count": 1, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Thu Jan 12 08:49:28 2023 \n", "+-----------------------------------------------------------------------------+\n", "| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n", "|-------------------------------+----------------------+----------------------+\n", "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", "| | | MIG M. |\n", "|===============================+======================+======================|\n", "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", "| N/A 58C P8 10W / 70W | 0MiB / 15109MiB | 0% Default |\n", "| | | N/A |\n", "+-------------------------------+----------------------+----------------------+\n", " \n", "+-----------------------------------------------------------------------------+\n", "| Processes: |\n", "| GPU GI CI PID Type Process name GPU Memory |\n", "| ID ID Usage |\n", "|=============================================================================|\n", "| No running processes found |\n", "+-----------------------------------------------------------------------------+\n" ] } ] }, { "cell_type": "markdown", "source": [ "# リポジトリのクローン\n", "リポジトリをクローンします" ], "metadata": { "id": "sLBfykjBnjWc" } }, { "cell_type": "code", "source": [ "# (2) リポジトリのクローン\n", "!git clone --depth 1 https://github.com/w-okada/voice-changer.git -b v.1.3.2\n", "%cd voice-changer/server\n", "!git clone --depth 1 https://github.com/isletennos/MMVC_Trainer.git -b v1.3.2.2\n", "!cd MMVC_Trainer/monotonic_align/ && python setup.py build_ext --inplace && cd -\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "86wTFmqsNMnD", "outputId": "3f06a785-7b24-4a9c-af9c-6eac5d155501" }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Cloning into 'voice-changer'...\n", "remote: Enumerating objects: 143, done.\u001b[K\n", "remote: Counting objects: 100% (143/143), done.\u001b[K\n", "remote: Compressing objects: 100% (128/128), done.\u001b[K\n", "remote: Total 143 (delta 21), reused 57 (delta 5), pack-reused 0\u001b[K\n", "Receiving objects: 100% (143/143), 1.51 MiB | 3.74 MiB/s, done.\n", "Resolving deltas: 100% (21/21), done.\n", "/content/voice-changer/server\n", "Cloning into 'MMVC_Trainer'...\n", "remote: Enumerating objects: 920, done.\u001b[K\n", "remote: Counting objects: 100% (920/920), done.\u001b[K\n", "remote: Compressing objects: 100% (830/830), done.\u001b[K\n", "remote: Total 920 (delta 4), reused 893 (delta 1), pack-reused 0\u001b[K\n", "Receiving objects: 100% (920/920), 53.04 MiB | 15.28 MiB/s, done.\n", "Resolving deltas: 100% (4/4), done.\n", "Note: checking out 'f17c8c57d1ab7512633e6c57521f1eef6851bd0e'.\n", "\n", "You are in 'detached HEAD' state. You can look around, make experimental\n", "changes and commit them, and you can discard any commits you make in this\n", "state without impacting any branches by performing another checkout.\n", "\n", "If you want to create a new branch to retain commits you create, you may\n", "do so (now or later) by using -b with the checkout command again. Example:\n", "\n", " git checkout -b \n", "\n", "Compiling core.pyx because it changed.\n", "[1/1] Cythonizing core.pyx\n", "/usr/local/lib/python3.8/dist-packages/Cython/Compiler/Main.py:369: FutureWarning: Cython directive 'language_level' not set, using 2 for now (Py2). This will change in a later release! File: /content/voice-changer/server/MMVC_Trainer/monotonic_align/core.pyx\n", " tree = Parsing.p_module(s, pxd, full_module_name)\n", "running build_ext\n", "building 'monotonic_align.core' extension\n", "creating build\n", "creating build/temp.linux-x86_64-3.8\n", "x86_64-linux-gnu-gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/local/lib/python3.8/dist-packages/numpy/core/include -I/usr/include/python3.8 -c core.c -o build/temp.linux-x86_64-3.8/core.o\n", "x86_64-linux-gnu-gcc -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -g -fwrapv -O2 -Wl,-Bsymbolic-functions -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 build/temp.linux-x86_64-3.8/core.o -o /content/voice-changer/server/MMVC_Trainer/monotonic_align/monotonic_align/core.cpython-38-x86_64-linux-gnu.so\n", "/content/voice-changer/server\n" ] } ] }, { "cell_type": "markdown", "source": [ "# モジュールのインストール\n", "\n", "必要なモジュールをインストールします。" ], "metadata": { "id": "8Na2PbLZSWgZ" } }, { "cell_type": "code", "source": [ "# (3) 設定ファイルの確認\n", "!apt-get install -y libsndfile1-dev &> /dev/null\n", "!pip install unidecode &> /dev/null\n", "!pip install phonemizer &> /dev/null\n", "!pip install retry &> /dev/null\n", "!pip install python-socketio &> /dev/null\n", "!pip install fastapi &> /dev/null\n", "!pip install python-multipart &> /dev/null\n", "!pip install uvicorn &> /dev/null\n", "!pip install websockets &> /dev/null\n", "!pip install pyOpenSSL &> /dev/null\n", "!pip install onnxruntime-gpu &> /dev/null" ], "metadata": { "id": "LwZAAuqxX7yY" }, "execution_count": 3, "outputs": [] }, { "cell_type": "markdown", "source": [ "# サーバの起動\n", "\n", "サーバを起動します。(4-1)\n", "\n", "サーバの起動状況を確認します。(4-2) \n", "\n", "このセルは繰り返し実行することになるのでCtrl+Retでセルを実行してください。\n", "\n", "下記のようなテキストが表示されたら起動完了です。\n", "\n", "**`DEBUG:asyncio:Using selector: EpollSelector`**\n", "\n", "```\n", " Phase name:__main__\n", " PHASE3:__main__\n", " PHASE1:__main__\n", "Start MMVC SocketIO Server\n", " CONFIG:None, MODEL:None ONNX_MODEL:None\n", "```\n", "\n" ], "metadata": { "id": "-_2OcN9Borke" } }, { "cell_type": "code", "source": [ "# (4-1) サーバの起動\n", "import random\n", "PORT = 10000 + random.randint(1, 9999)\n", "LOG_FILE = f\"LOG_FILE_{PORT}\"\n", "\n", "get_ipython().system_raw(f'python3 MMVCServerSIO.py -t MMVC -p {PORT} --colab True >{LOG_FILE} 2>&1 &')\n", "#print(f\"PORT:{PORT}, LOG_FILE:{LOG_FILE}\")" ], "metadata": { "id": "G-nMdPxEW1rc" }, "execution_count": 4, "outputs": [] }, { "cell_type": "code", "source": [ "# (4-2) サーバの起動確認\n", "!sleep 30\n", "!tail -20 {LOG_FILE}" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "chu06KpAjEK6", "outputId": "b0efbfea-cfce-427b-bb0e-1d2c5b07f298" }, "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[32m Phase name:__main__\u001b[0m\n", "\u001b[32m PHASE3:__main__\u001b[0m\n", "\u001b[32m PHASE1:__main__\u001b[0m\n", "\u001b[17mStart MMVC SocketIO Server\u001b[0m\n", "\u001b[34m CONFIG:None, MODEL:None ONNX_MODEL:None\u001b[0m\n" ] } ] }, { "cell_type": "markdown", "source": [ "# プロキシを起動\n", "ウェブサーバへのアクセスをするためのプロキシを起動します。\n", "\n", "表示されたURLをクリックして開くと別タブでアプリが開きます。\n", "\n", "Colabなので、ロードにある程度時間がかかります(30秒くらい)。" ], "metadata": { "id": "WhxcFLQEpctq" } }, { "cell_type": "code", "source": [ "# (5) プロキシを起動\n", "from google.colab.output import eval_js\n", "proxy = eval_js( \"google.colab.kernel.proxyPort(\" + str(PORT) + \")\" )\n", "print(f\"{proxy}front/?colab=true\")" ], "metadata": { "id": "nkRjZm95l87C", "colab": { "base_uri": "https://localhost:8080/", "height": 34 }, "outputId": "9c7be773-00ef-4aef-b05f-41422c295926" }, "execution_count": 6, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "https://yro7e3q4cuk-496ff2e9c6d22116-13479-colab.googleusercontent.com/front/?colab=true\n" ] } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "axkt5BjhoiPV" }, "execution_count": 6, "outputs": [] } ] }