import torch from scipy.io.wavfile import write, read import numpy as np import traceback import utils import commons from models import SynthesizerTrn from text.symbols import symbols from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate from mel_processing import spectrogram_torch from text import text_to_sequence, cleaned_text_to_sequence class VoiceChanger(): def __init__(self, config, model): self.hps = utils.get_hparams_from_file(config) self.net_g = SynthesizerTrn( len(symbols), self.hps.data.filter_length // 2 + 1, self.hps.train.segment_size // self.hps.data.hop_length, n_speakers=self.hps.data.n_speakers, **self.hps.model) self.net_g.eval() self.gpu_num = torch.cuda.device_count() utils.load_checkpoint( model, self.net_g, None) text_norm = text_to_sequence("a", self.hps.data.text_cleaners) text_norm = commons.intersperse(text_norm, 0) self.text_norm = torch.LongTensor(text_norm) self.audio_buffer = torch.zeros(1, 0) self.prev_audio = np.zeros(1) print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num})") def destroy(self): del self.net_g def on_request(self, gpu, srcId, dstId, timestamp, prefixChunkSize, wav): unpackedData = wav convertSize = unpackedData.shape[0] + (prefixChunkSize * 512) try: audio = torch.FloatTensor(unpackedData.astype(np.float32)) audio_norm = audio /self.hps.data.max_wav_value audio_norm = audio_norm.unsqueeze(0) self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) audio_norm = self.audio_buffer[:,-convertSize:] self.audio_buffer = audio_norm spec = spectrogram_torch(audio_norm, self.hps.data.filter_length, self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length, center=False) spec = torch.squeeze(spec, 0) sid = torch.LongTensor([int(srcId)]) data = (self.text_norm , spec, audio_norm, sid) data = TextAudioSpeakerCollate()([data]) if gpu<0 or self.gpu_num==0 : with torch.no_grad(): x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data] sid_tgt1 = torch.LongTensor([dstId]).cpu() audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy() else: with torch.no_grad(): x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(gpu) for x in data] sid_tgt1 = torch.LongTensor([dstId]).cuda(gpu) audio1 = (self.net_g.cuda(gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data * self.hps.data.max_wav_value).cpu().float().numpy() # if len(self.prev_audio) > unpackedData.shape[0]: # prevLastFragment = self.prev_audio[-unpackedData.shape[0]:] # curSecondLastFragment = audio1[-unpackedData.shape[0]*2:-unpackedData.shape[0]] # print("prev, cur", prevLastFragment.shape, curSecondLastFragment.shape) # self.prev_audio = audio1 # print("self.prev_audio", self.prev_audio.shape) audio1 = audio1[-unpackedData.shape[0]*2:] except Exception as e: print("VC PROCESSING!!!! EXCEPTION!!!", e) print(traceback.format_exc()) audio1 = audio1.astype(np.int16) return audio1