import torchcrepe import torch import numpy as np from const import PitchExtractorType from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor class CrepePitchExtractor(PitchExtractor): def __init__(self): super().__init__() self.pitchExtractorType: PitchExtractorType = "crepe" self.f0_min = 50 self.f0_max = 1100 self.sapmle_rate = 16000 self.uv_interp = True if torch.cuda.is_available(): self.device = torch.device("cuda:" + str(torch.cuda.current_device())) else: self.device = torch.device("cpu") def extract(self, audio: torch.Tensor, pitch, f0_up_key, window, silence_front=0): start_frame = int(silence_front * self.sapmle_rate / window) real_silence_front = start_frame * window / self.sapmle_rate audio = audio[int(np.round(real_silence_front * self.sapmle_rate)):] f0, pd = torchcrepe.predict( audio.unsqueeze(0), self.sapmle_rate, hop_length=window, fmin=self.f0_min, fmax=self.f0_max, # model="tiny", model="full", batch_size=256, decoder=torchcrepe.decode.weighted_argmax, device=self.device, return_periodicity=True, ) f0 = torchcrepe.filter.median(f0, 3) # 本家だとmeanですが、harvestに合わせmedianフィルタ pd = torchcrepe.filter.median(pd, 3) f0[pd < 0.1] = 0 f0 = f0.squeeze() pitch[-f0.shape[0]:] = f0.cpu()[:pitch.shape[0]] f0 = pitch if self.uv_interp: uv = f0 == 0 if len(f0[~uv]) > 0: f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) f0[f0 < self.f0_min] = self.f0_min f0 = f0 * 2 ** (float(f0_up_key) / 12) return f0