import numpy as np import parselmouth import torch import pdb from time import time as ttime import torch.nn.functional as F from config import x_pad, x_query, x_center, x_max import scipy.signal as signal import pyworld import os import traceback import faiss class VC(object): def __init__(self, tgt_sr, device, is_half, x_pad): self.sr = 16000 # hubert输入采样率 self.window = 160 # 每帧点数 self.t_pad = self.sr * x_pad # 每条前后pad时间 print("INITIALIZE", self.sr, x_pad, self.t_pad) self.t_pad_tgt = tgt_sr * x_pad self.t_pad2 = self.t_pad * 2 self.t_query = self.sr * x_query # 查询切点前后查询时间 self.t_center = self.sr * x_center # 查询切点位置 self.t_max = self.sr * x_max # 免查询时长阈值 self.device = device self.is_half = is_half def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None): time_step = self.window / self.sr * 1000 # f0_min = 50 # f0_max = 1100 f0_min = 70 f0_max = 1000 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) if (f0_method == "pm"): f0 = parselmouth.Sound(x, self.sr).to_pitch_ac( time_step=time_step / 1000, voicing_threshold=0.6, pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] pad_size = (p_len - len(f0) + 1) // 2 if (pad_size > 0 or p_len - len(f0) - pad_size > 0): f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode='constant') elif (f0_method == "harvest"): print("xlen", len(x)) f0, t = pyworld.harvest( x.astype(np.double), fs=self.sr, f0_ceil=f0_max, frame_period=10, ) f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) f0 = signal.medfilt(f0, 3) f0 *= pow(2, f0_up_key / 12) # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) tf0 = self.sr // self.window # 每秒f0点数 if (inp_f0 is not None): delta_t = np.round((inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1).astype("int16") replace_f0 = np.interp(list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]) shape = f0[x_pad * tf0:x_pad * tf0 + len(replace_f0)].shape[0] f0[x_pad * tf0:x_pad * tf0 + len(replace_f0)] = replace_f0[:shape] # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) f0bak = f0.copy() f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > 255] = 255 f0_coarse = np.rint(f0_mel).astype(np.int) return f0_coarse, f0bak # 1-0 def vc(self, model, net_g, sid, audio0, pitch, pitchf, times, index, big_npy, index_rate): # ,file_index,file_big_npy print("vc audio len 1,", len(audio0)) feats = torch.from_numpy(audio0) if (self.is_half == True): feats = feats.half() else: feats = feats.float() if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) print("padding_mask", padding_mask) inputs = { "source": feats.to(self.device), "padding_mask": padding_mask, "output_layer": 9, # layer 9 } t0 = ttime() with torch.no_grad(): logits = model.extract_features(**inputs) feats = model.final_proj(logits[0]) if (isinstance(index, type(None)) == False and isinstance(big_npy, type(None)) == False and index_rate != 0): npy = feats[0].cpu().numpy() if (self.is_half == True): npy = npy.astype("float32") D, I = index.search(npy, 1) npy = big_npy[I.squeeze()] if (self.is_half == True): npy = npy.astype("float16") feats = torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats print("feats shape1", feats.shape) feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) print("feats shape2", feats.shape) t1 = ttime() p_len = audio0.shape[0] // self.window if (feats.shape[1] < p_len): p_len = feats.shape[1] if (pitch != None and pitchf != None): pitch = pitch[:, :p_len] pitchf = pitchf[:, :p_len] p_len = torch.tensor([p_len], device=self.device).long() with torch.no_grad(): print("vc audio len feat 1,", feats.shape) if (pitch != None and pitchf != None): print("vc audio len feat use pitch!!!!!!!,", feats.shape) audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16) else: audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16) del feats, p_len, padding_mask torch.cuda.empty_cache() t2 = ttime() times[0] += (t1 - t0) times[2] += (t2 - t1) print("vc audio return", len(audio1), audio1) return audio1 def pipeline(self, model, net_g, sid, audio, times, f0_up_key, f0_method, file_index, file_big_npy, index_rate, if_f0, f0_file=None): print("audio len 1,", len(audio)) if (file_big_npy != "" and file_index != "" and os.path.exists(file_big_npy) == True and os.path.exists(file_index) == True and index_rate != 0): try: index = faiss.read_index(file_index) big_npy = np.load(file_big_npy) except: traceback.print_exc() index = big_npy = None else: index = big_npy = None audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect') print("audio_pad len 1,", len(audio_pad)) opt_ts = [] # if (audio_pad.shape[0] > self.t_max): # audio_sum = np.zeros_like(audio) # for i in range(self.window): # audio_sum += audio_pad[i:i - self.window] # for t in range(self.t_center, audio.shape[0], self.t_center): # opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) # == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0]) print("audio_pad len 2,", len(audio_pad), opt_ts) s = 0 audio_opt = [] t = None t1 = ttime() audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect') p_len = audio_pad.shape[0] // self.window inp_f0 = None print("audio_pad len 3,", len(audio_pad), self.t_pad, len(audio)) # if (hasattr(f0_file, 'name') == True): # print("load pitch !!!!!!!!!!!!", f0_file.name) # try: # with open(f0_file.name, "r")as f: # lines = f.read().strip("\n").split("\n") # inp_f0 = [] # for line in lines: # inp_f0.append([float(i)for i in line.split(",")]) # inp_f0 = np.array(inp_f0, dtype="float32") # except: # traceback.print_exc() sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() pitch, pitchf = None, None if (if_f0 == 1): pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0) print("pitch!", pitch) pitch = pitch[:p_len] pitchf = pitchf[:p_len] pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() t2 = ttime() times[1] += (t2 - t1) print("opt start") # for t in opt_ts: # print("opt exec") # t = t // self.window * self.window # if (if_f0 == 1): # audio_opt.append(self.vc(model, net_g, sid, audio_pad[s:t + self.t_pad2 + self.window], pitch[:, s // self.window:( # t + self.t_pad2) // self.window], pitchf[:, s // self.window:(t + self.t_pad2) // self.window], times, index, big_npy, index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) # else: # audio_opt.append(self.vc(model, net_g, sid, audio_pad[s:t + self.t_pad2 + self.window], # None, None, times, index, big_npy, index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) # s = t print("opt end") if (if_f0 == 1): print("TTTTT", t, self.t_pad_tgt) # audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch, pitchf[:, # t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window:]if t is not None else pitch, pitchf[:, t // self.window:]if t is not None else pitchf, times, index, big_npy, index_rate)) else: audio_opt.append(self.vc(model, net_g, sid, audio_pad[t:], None, None, times, index, big_npy, index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) audio_opt = np.concatenate(audio_opt) del pitch, pitchf, sid torch.cuda.empty_cache() print("result", audio_opt) return audio_opt