from features import SignalGenerator, dilated_factor from scipy.interpolate import interp1d import torch import numpy as np import json import os hann_window = {} class TextAudioSpeakerCollate(): """ Zero-pads model inputs and targets """ def __init__( self, sample_rate, hop_size, f0_factor=1.0, dense_factors=[0.5, 1, 4, 8], upsample_scales=[8, 4, 2, 2], sine_amp=0.1, noise_amp=0.003, signal_types=["sine"], ): self.dense_factors = dense_factors self.prod_upsample_scales = np.cumprod(upsample_scales) self.sample_rate = sample_rate self.signal_generator = SignalGenerator( sample_rate=sample_rate, hop_size=hop_size, sine_amp=sine_amp, noise_amp=noise_amp, signal_types=signal_types, ) self.f0_factor = f0_factor def __call__(self, batch): """Collate's training batch from normalized text, audio and speaker identities PARAMS ------ batch: [text_normalized, spec_normalized, wav_normalized, sid, note] """ spec_lengths = torch.LongTensor(len(batch)) sid = torch.LongTensor(len(batch)) spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), batch[0][0].size(1)) f0_padded = torch.FloatTensor(len(batch), 1, batch[0][2].size(0)) # 返り値の初期化 spec_padded.zero_() f0_padded.zero_() # dfs dfs_batch = [[] for _ in range(len(self.dense_factors))] # row spec, sid, f0 for i in range(len(batch)): row = batch[i] spec = row[0] spec_padded[i, :, :spec.size(1)] = spec spec_lengths[i] = spec.size(1) sid[i] = row[1] # 推論時 f0/cf0にf0の倍率を乗算してf0/cf0を求める f0 = row[2] * self.f0_factor f0_padded[i, :, :f0.size(0)] = f0 # dfs dfs = [] # dilated_factor の入力はnumpy!! for df, us in zip(self.dense_factors, self.prod_upsample_scales): dfs += [ np.repeat(dilated_factor(torch.unsqueeze(f0, dim=1).to('cpu').detach().numpy(), self.sample_rate, df), us) ] # よくわからないけど、後で論文ちゃんと読む for i in range(len(self.dense_factors)): dfs_batch[i] += [ dfs[i].astype(np.float32).reshape(-1, 1) ] # [(T', 1), ...] # よくわからないdfsを転置 for i in range(len(self.dense_factors)): dfs_batch[i] = torch.FloatTensor(np.array(dfs_batch[i])).transpose( 2, 1 ) # (B, 1, T') # f0/cf0を実際に使うSignalに変換する in_batch = self.signal_generator(f0_padded) return spec_padded, spec_lengths, sid, in_batch, dfs_batch def convert_continuos_f0(f0, f0_size): # get start and end of f0 if (f0 == 0).all(): return np.zeros((f0_size,)) start_f0 = f0[f0 != 0][0] end_f0 = f0[f0 != 0][-1] # padding start and end of f0 sequence cf0 = f0 start_idx = np.where(cf0 == start_f0)[0][0] end_idx = np.where(cf0 == end_f0)[0][-1] cf0[:start_idx] = start_f0 cf0[end_idx:] = end_f0 # get non-zero frame index nz_frames = np.where(cf0 != 0)[0] # perform linear interpolation f = interp1d(nz_frames, cf0[nz_frames], bounds_error=False, fill_value=0.0) cf0_ = f(np.arange(0, f0_size)) # print(cf0.shape, cf0_.shape, f0.shape, f0_size) # print(cf0_) return f(np.arange(0, f0_size)) def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) dtype_device = str(y.dtype) + '_' + str(y.device) wnsize_dtype_device = str(win_size) + '_' + dtype_device if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) return spec def get_hparams_from_file(config_path): with open(config_path, "r", encoding="utf-8") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) return hparams class HParams(): def __init__(self, **kwargs): for k, v in kwargs.items(): if type(v) == dict: v = HParams(**v) self[k] = v def keys(self): return self.__dict__.keys() def items(self): return self.__dict__.items() def values(self): return self.__dict__.values() def __len__(self): return len(self.__dict__) def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): return setattr(self, key, value) def __contains__(self, key): return key in self.__dict__ def __repr__(self): return self.__dict__.__repr__() def load_checkpoint(checkpoint_path, model, optimizer=None): assert os.path.isfile(checkpoint_path), f"No such file or directory: {checkpoint_path}" checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') iteration = checkpoint_dict['iteration'] learning_rate = checkpoint_dict['learning_rate'] if optimizer is not None: optimizer.load_state_dict(checkpoint_dict['optimizer']) saved_state_dict = { **checkpoint_dict['pe'], **checkpoint_dict['flow'], **checkpoint_dict['text_enc'], **checkpoint_dict['dec'], **checkpoint_dict['emb_g'] } if hasattr(model, 'module'): state_dict = model.module.state_dict() else: state_dict = model.state_dict() new_state_dict = {} for k, v in state_dict.items(): try: new_state_dict[k] = saved_state_dict[k] except: new_state_dict[k] = v if hasattr(model, 'module'): model.module.load_state_dict(new_state_dict) else: model.load_state_dict(new_state_dict) return model, optimizer, learning_rate, iteration