from typing import Any, Union, cast from const import TMP_DIR import torch import os import numpy as np from dataclasses import dataclass, asdict, field import resampy import onnxruntime from mods.log_control import VoiceChangaerLogger from voice_changer.IORecorder import IORecorder from voice_changer.utils.Timer import Timer2 from voice_changer.utils.VoiceChangerIF import VoiceChangerIF from voice_changer.utils.VoiceChangerModel import AudioInOut, VoiceChangerModel from Exceptions import ( DeviceCannotSupportHalfPrecisionException, DeviceChangingException, HalfPrecisionChangingException, NoModeLoadedException, NotEnoughDataExtimateF0, ONNXInputArgumentException, PipelineNotInitializedException, VoiceChangerIsNotSelectedException, ) from voice_changer.utils.VoiceChangerParams import VoiceChangerParams STREAM_INPUT_FILE = os.path.join(TMP_DIR, "in.wav") STREAM_OUTPUT_FILE = os.path.join(TMP_DIR, "out.wav") logger = VoiceChangaerLogger.get_instance().getLogger() @dataclass class VoiceChangerSettings: inputSampleRate: int = 48000 # 48000 or 24000 outputSampleRate: int = 48000 # 48000 or 24000 crossFadeOffsetRate: float = 0.1 crossFadeEndRate: float = 0.9 crossFadeOverlapSize: int = 4096 recordIO: int = 0 # 0:off, 1:on performance: list[int] = field(default_factory=lambda: [0, 0, 0, 0]) # ↓mutableな物だけ列挙 intData: list[str] = field( default_factory=lambda: [ "inputSampleRate", "outputSampleRate", "crossFadeOverlapSize", "recordIO", ] ) floatData: list[str] = field( default_factory=lambda: [ "crossFadeOffsetRate", "crossFadeEndRate", ] ) strData: list[str] = field(default_factory=lambda: []) class VoiceChanger(VoiceChangerIF): ioRecorder: IORecorder sola_buffer: AudioInOut def __init__(self, params: VoiceChangerParams): # 初期化 self.settings = VoiceChangerSettings() self.currentCrossFadeOffsetRate = 0.0 self.currentCrossFadeEndRate = 0.0 self.currentCrossFadeOverlapSize = 0 # setting self.crossfadeSize = 0 # calculated self.voiceChanger: VoiceChangerModel | None = None self.params = params self.gpu_num = torch.cuda.device_count() self.prev_audio = np.zeros(4096) self.mps_enabled: bool = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available() self.onnx_device = onnxruntime.get_device() logger.info(f"VoiceChanger Initialized (GPU_NUM(cuda):{self.gpu_num}, mps_enabled:{self.mps_enabled}, onnx_device:{self.onnx_device})") def setModel(self, model: Any): self.voiceChanger = model def setInputSampleRate(self, sr: int): self.settings.inputSampleRate = sr def setOutputSampleRate(self, sr: int): self.settings.outputSampleRate = sr def get_info(self): data = asdict(self.settings) if self.voiceChanger is not None: data.update(self.voiceChanger.get_info()) return data def get_performance(self): return self.settings.performance def update_settings(self, key: str, val: Any): if self.voiceChanger is None: logger.warn("[Voice Changer] Voice Changer is not selected.") return self.get_info() if key == "serverAudioStated" and val == 0: self.settings.inputSampleRate = 48000 self.settings.outputSampleRate = 48000 if key in self.settings.intData: setattr(self.settings, key, int(val)) if key == "crossFadeOffsetRate" or key == "crossFadeEndRate": self.crossfadeSize = 0 if key == "recordIO" and val == 1: if hasattr(self, "ioRecorder"): self.ioRecorder.close() self.ioRecorder = IORecorder(STREAM_INPUT_FILE, STREAM_OUTPUT_FILE, self.settings.inputSampleRate, self.settings.outputSampleRate) if key == "recordIO" and val == 0: if hasattr(self, "ioRecorder"): self.ioRecorder.close() pass if key == "recordIO" and val == 2: if hasattr(self, "ioRecorder"): self.ioRecorder.close() elif key in self.settings.floatData: setattr(self.settings, key, float(val)) elif key in self.settings.strData: setattr(self.settings, key, str(val)) else: ret = self.voiceChanger.update_settings(key, val) if ret is False: pass # print(f"({key} is not mutable variable or unknown variable)") return self.get_info() def _generate_strength(self, crossfadeSize: int): if self.crossfadeSize != crossfadeSize or self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or self.currentCrossFadeOverlapSize != self.settings.crossFadeOverlapSize: self.crossfadeSize = crossfadeSize self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate self.currentCrossFadeEndRate = self.settings.crossFadeEndRate self.currentCrossFadeOverlapSize = self.settings.crossFadeOverlapSize cf_offset = int(crossfadeSize * self.settings.crossFadeOffsetRate) cf_end = int(crossfadeSize * self.settings.crossFadeEndRate) cf_range = cf_end - cf_offset percent = np.arange(cf_range) / cf_range np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2 np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2 self.np_prev_strength = np.concatenate( [ np.ones(cf_offset), np_prev_strength, np.zeros(crossfadeSize - cf_offset - len(np_prev_strength)), ] ) self.np_cur_strength = np.concatenate( [ np.zeros(cf_offset), np_cur_strength, np.ones(crossfadeSize - cf_offset - len(np_cur_strength)), ] ) logger.info(f"Generated Strengths: for prev:{self.np_prev_strength.shape}, for cur:{self.np_cur_strength.shape}") # ひとつ前の結果とサイズが変わるため、記録は消去する。 if hasattr(self, "np_prev_audio1") is True: delattr(self, "np_prev_audio1") if hasattr(self, "sola_buffer") is True: del self.sola_buffer def get_processing_sampling_rate(self): if self.voiceChanger is None: return 0 else: return self.voiceChanger.get_processing_sampling_rate() # receivedData: tuple of short def on_request(self, receivedData: AudioInOut) -> tuple[AudioInOut, list[Union[int, float]]]: return self.on_request_sola(receivedData) def on_request_sola(self, receivedData: AudioInOut) -> tuple[AudioInOut, list[Union[int, float]]]: try: if self.voiceChanger is None: raise VoiceChangerIsNotSelectedException("Voice Changer is not selected.") processing_sampling_rate = self.voiceChanger.get_processing_sampling_rate() # 前処理 with Timer2("pre-process", False) as t: if self.settings.inputSampleRate != processing_sampling_rate: newData = cast( AudioInOut, resampy.resample( receivedData, self.settings.inputSampleRate, processing_sampling_rate, ), ) else: newData = receivedData sola_search_frame = int(0.012 * processing_sampling_rate) # sola_search_frame = 0 block_frame = newData.shape[0] crossfade_frame = min(self.settings.crossFadeOverlapSize, block_frame) self._generate_strength(crossfade_frame) data = self.voiceChanger.generate_input(newData, block_frame, crossfade_frame, sola_search_frame) t.record("fin") preprocess_time = t.secs # 変換処理 with Timer2("main-process", False) as t: # Inference audio = self.voiceChanger.inference(data) if hasattr(self, "sola_buffer") is True: np.set_printoptions(threshold=10000) audio_offset = -1 * (sola_search_frame + crossfade_frame + block_frame) audio = audio[audio_offset:] # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC, https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI cor_nom = np.convolve( audio[: crossfade_frame + sola_search_frame], np.flip(self.sola_buffer), "valid", ) cor_den = np.sqrt( np.convolve( audio[: crossfade_frame + sola_search_frame] ** 2, np.ones(crossfade_frame), "valid", ) + 1e-3 ) sola_offset = int(np.argmax(cor_nom / cor_den)) sola_end = sola_offset + block_frame output_wav = audio[sola_offset:sola_end].astype(np.float64) output_wav[:crossfade_frame] *= self.np_cur_strength output_wav[:crossfade_frame] += self.sola_buffer[:] result = output_wav else: logger.info("[Voice Changer] warming up... generating sola buffer.") result = np.zeros(4096).astype(np.int16) if hasattr(self, "sola_buffer") is True and sola_offset < sola_search_frame: offset = -1 * (sola_search_frame + crossfade_frame - sola_offset) end = -1 * (sola_search_frame - sola_offset) sola_buf_org = audio[offset:end] self.sola_buffer = sola_buf_org * self.np_prev_strength else: self.sola_buffer = audio[-crossfade_frame:] * self.np_prev_strength # self.sola_buffer = audio[- crossfade_frame:] t.record("fin") mainprocess_time = t.secs # 後処理 with Timer2("post-process", False) as t: result = result.astype(np.int16) if self.settings.outputSampleRate != processing_sampling_rate: # print( # "output samplingrate", # self.settings.outputSampleRate, # processing_sampling_rate, # ) outputData = cast( AudioInOut, resampy.resample( result, processing_sampling_rate, self.settings.outputSampleRate, ).astype(np.int16), ) else: outputData = result print_convert_processing(f" Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.outputSampleRate}hz") if receivedData.shape[0] != outputData.shape[0]: # print( # f"Padding, in:{receivedData.shape[0]} out:{outputData.shape[0]}" # ) outputData = pad_array(outputData, receivedData.shape[0]) # print_convert_processing( # f" Padded!, Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz") pass if self.settings.recordIO == 1: self.ioRecorder.writeInput(receivedData) self.ioRecorder.writeOutput(outputData.tobytes()) t.record("fin") postprocess_time = t.secs print_convert_processing(f" [fin] Input/Output size:{receivedData.shape[0]},{outputData.shape[0]}") perf = [preprocess_time, mainprocess_time, postprocess_time] return outputData, perf except NoModeLoadedException as e: logger.warn(f"[Voice Changer] [Exception], {e}") return np.zeros(1).astype(np.int16), [0, 0, 0] except ONNXInputArgumentException as e: logger.warn(f"[Voice Changer] [Exception] onnx are waiting valid input., {e}") return np.zeros(1).astype(np.int16), [0, 0, 0] except HalfPrecisionChangingException: logger.warn("[Voice Changer] Switching model configuration....") return np.zeros(1).astype(np.int16), [0, 0, 0] except NotEnoughDataExtimateF0: logger.warn("[Voice Changer] warming up... waiting more data.") return np.zeros(1).astype(np.int16), [0, 0, 0] except DeviceChangingException as e: logger.warn(f"[Voice Changer] embedder: {e}") return np.zeros(1).astype(np.int16), [0, 0, 0] except VoiceChangerIsNotSelectedException: logger.warn("[Voice Changer] Voice Changer is not selected. Wait a bit and if there is no improvement, please re-select vc.") return np.zeros(1).astype(np.int16), [0, 0, 0] except DeviceCannotSupportHalfPrecisionException: # RVC.pyでfallback処理をするので、ここはダミーデータ返すだけ。 return np.zeros(1).astype(np.int16), [0, 0, 0] except PipelineNotInitializedException: return np.zeros(1).astype(np.int16), [0, 0, 0] except Exception as e: logger.warn(f"[Voice Changer] VC PROCESSING EXCEPTION!!! {e}") logger.exception(e) return np.zeros(1).astype(np.int16), [0, 0, 0] def export2onnx(self): return self.voiceChanger.export2onnx() ############## def merge_models(self, request: str): if self.voiceChanger is None: logger.info("[Voice Changer] Voice Changer is not selected.") return self.voiceChanger.merge_models(request) return self.get_info() PRINT_CONVERT_PROCESSING: bool = False # PRINT_CONVERT_PROCESSING = True def print_convert_processing(mess: str): if PRINT_CONVERT_PROCESSING is True: logger.info(mess) def pad_array(arr: AudioInOut, target_length: int): current_length = arr.shape[0] if current_length >= target_length: return arr else: pad_width = target_length - current_length pad_left = pad_width // 2 pad_right = pad_width - pad_left # padded_arr = np.pad( # arr, (pad_left, pad_right), "constant", constant_values=(0, 0) # ) padded_arr = np.pad(arr, (pad_left, pad_right), "edge") return padded_arr