import pyworld import numpy as np import scipy.signal as signal from const import PitchExtractorType import torch from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor class HarvestPitchExtractor(PitchExtractor): def __init__(self): super().__init__() self.pitchExtractorType: PitchExtractorType = "harvest" def extract(self, audio: torch.Tensor, pitchf, f0_up_key, sr, window, silence_front=0): audio = audio.detach().cpu().numpy() f0_min = 50 f0_max = 1100 # f0_mel_min = 1127 * np.log(1 + f0_min / 700) # f0_mel_max = 1127 * np.log(1 + f0_max / 700) f0 = self.extract2(audio, uv_interp=True, hop_size=window, silence_front=silence_front) f0 = f0 * 2 ** (float(f0_up_key) / 12) # pitchf[-f0.shape[0]:] = f0[:pitchf.shape[0]] return f0 def extract2(self, audio, uv_interp, hop_size: int, silence_front=0): # audio: 1d numpy array n_frames = int(len(audio) // hop_size) + 1 start_frame = int(silence_front * 16000 / hop_size) real_silence_front = start_frame * hop_size / 16000 audio = audio[int(np.round(real_silence_front * 16000)):] f0, _ = pyworld.harvest( audio.astype('double'), 16000, f0_floor=50, f0_ceil=1100, frame_period=(1000 * hop_size / 16000)) f0 = np.pad(f0.astype('float'), (start_frame, n_frames - len(f0) - start_frame)) if uv_interp: uv = f0 == 0 if len(f0[~uv]) > 0: f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) f0[f0 < 50] = 50 return f0