import numpy as np import torch import torch.nn.functional as F from torchaudio.transforms import Resample from .nsf_hifigan.nvSTFT import STFT from .nsf_hifigan.models import load_model class Enhancer: def __init__(self, enhancer_type, enhancer_ckpt, device=None): if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = device if enhancer_type == "nsf-hifigan": self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device) else: raise ValueError(f" [x] Unknown enhancer: {enhancer_type}") self.resample_kernel = {} self.enhancer_sample_rate = self.enhancer.sample_rate() self.enhancer_hop_size = self.enhancer.hop_size() def enhance(self, audio, sample_rate, f0, hop_size, adaptive_key=0, silence_front=0): # 1, T # 1, n_frames, 1 # enhancer start time start_frame = int(silence_front * sample_rate / hop_size) real_silence_front = start_frame * hop_size / sample_rate audio = audio[:, int(np.round(real_silence_front * sample_rate)) :] f0 = f0[:, start_frame:, :] # adaptive parameters if adaptive_key == "auto": adaptive_key = 12 * np.log2(float(torch.max(f0) / 760)) adaptive_key = max(0, np.ceil(adaptive_key)) print("auto_adaptive_key: " + str(int(adaptive_key))) else: adaptive_key = float(adaptive_key) adaptive_factor = 2 ** (-adaptive_key / 12) adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100)) real_factor = self.enhancer_sample_rate / adaptive_sample_rate # resample the ddsp output if sample_rate == adaptive_sample_rate: audio_res = audio else: key_str = str(sample_rate) + str(adaptive_sample_rate) if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width=128).to(self.device) audio_res = self.resample_kernel[key_str](audio) n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1) # resample f0 if hop_size == self.enhancer_hop_size and sample_rate == self.enhancer_sample_rate and sample_rate == adaptive_sample_rate: f0_res = f0.squeeze(-1) # 1, n_frames else: f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy() f0_np *= real_factor time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames) f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1]) f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames # enhance enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res) # resample the enhanced output if adaptive_sample_rate != enhancer_sample_rate: key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate) if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width=128).to(self.device) enhanced_audio = self.resample_kernel[key_str](enhanced_audio) # pad the silence frames if start_frame > 0: enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0)) return enhanced_audio, enhancer_sample_rate class NsfHifiGAN(torch.nn.Module): def __init__(self, model_path, device=None): super().__init__() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = device print("| Load HifiGAN: ", model_path) self.model, self.h = load_model(model_path, device=self.device) self.stft = STFT(self.h.sampling_rate, self.h.num_mels, self.h.n_fft, self.h.win_size, self.h.hop_size, self.h.fmin, self.h.fmax) def sample_rate(self): return self.h.sampling_rate def hop_size(self): return self.h.hop_size def forward(self, audio, f0): with torch.no_grad(): mel = self.stft.get_mel(audio) enhanced_audio = self.model(mel, f0[:, : mel.size(-1)]) return enhanced_audio, self.h.sampling_rate