import torch from torch import device from const import EnumInferenceTypes from voice_changer.RVC.inferencer.Inferencer import Inferencer from infer_pack.models import ( # type:ignore SynthesizerTrnMs256NSFsid, ) class RVCInferencer(Inferencer): def loadModel(self, file: str, dev: device, isHalf: bool = True): super().setProps(EnumInferenceTypes.pyTorchRVC, file, dev, isHalf) print("load inf", file) cpt = torch.load(file, map_location="cpu") model = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=isHalf) model.eval() model.load_state_dict(cpt["weight"], strict=False) model = model.to(dev) if isHalf: model = model.half() self.model = model return self def infer( self, feats: torch.Tensor, pitch_length: torch.Tensor, pitch: torch.Tensor, pitchf: torch.Tensor, sid: torch.Tensor, ) -> torch.Tensor: return self.model.infer(feats, pitch_length, pitch, pitchf, sid)