import torch import numpy as np from const import PitchExtractorType from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor from voice_changer.DiffusionSVC.pitchExtractor.rmvpe.rmvpe import RMVPE class RMVPEPitchExtractor(PitchExtractor): def __init__(self, file: str, gpu: int): super().__init__() self.pitchExtractorType: PitchExtractorType = "rmvpe" self.f0_min = 50 self.f0_max = 1100 self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) self.uv_interp = True self.input_sr = -1 if torch.cuda.is_available() and gpu >= 0: self.device = torch.device("cuda:" + str(torch.cuda.current_device())) else: self.device = torch.device("cpu") self.rmvpe = RMVPE(model_path=file, is_half=False, device=self.device) def extract(self, audio, pitchf, f0_up_key, sr, window, silence_front=0): hop_size = 160 # RMVPE固定 offset_frame_number = silence_front * 16000 start_frame = int(offset_frame_number / hop_size) # frame real_silence_front = start_frame * hop_size / 16000 # 秒 audio = audio[int(np.round(real_silence_front * 16000)):] f0 = self.rmvpe.infer_from_audio_t(audio, thred=0.03) f0 = f0 * 2 ** (float(f0_up_key) / 12) pitchf[-f0.shape[0]:] = f0[:pitchf.shape[0]] f0 = pitchf f0bak = f0.copy() f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / ( self.f0_mel_max - self.f0_mel_min ) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > 255] = 255 f0_coarse = np.rint(f0_mel).astype(int) return f0_coarse, f0bak