import sys import os from voice_changer.utils.LoadModelParams import LoadModelParams from voice_changer.utils.VoiceChangerModel import AudioInOut if sys.platform.startswith("darwin"): baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")] if len(baseDir) != 1: print("baseDir should be only one ", baseDir) sys.exit() modulePath = os.path.join(baseDir[0], "MMVC_Client_v13", "python") sys.path.append(modulePath) else: modulePath = os.path.join("MMVC_Client_v13", "python") sys.path.append(modulePath) from dataclasses import dataclass, asdict, field import numpy as np import torch import onnxruntime from symbols import symbols # type:ignore from models import SynthesizerTrn # type:ignore from voice_changer.MMVCv13.TrainerFunctions import ( TextAudioSpeakerCollate, spectrogram_torch, load_checkpoint, get_hparams_from_file, ) from Exceptions import NoModeLoadedException @dataclass class MMVCv13Settings: gpu: int = 0 srcId: int = 0 dstId: int = 101 framework: str = "PyTorch" # PyTorch or ONNX pyTorchModelFile: str = "" onnxModelFile: str = "" configFile: str = "" # ↓mutableな物だけ列挙 intData = ["gpu", "srcId", "dstId"] floatData: list[str] = field(default_factory=lambda: []) strData = ["framework"] class MMVCv13: audio_buffer: AudioInOut | None = None def __init__(self): self.settings = MMVCv13Settings() self.net_g = None self.onnx_session = None self.gpu_num = torch.cuda.device_count() self.text_norm = torch.LongTensor([0, 6, 0]) def loadModel(self, props: LoadModelParams): params = props.params self.settings.configFile = params["files"]["mmvcv13Config"] self.hps = get_hparams_from_file(self.settings.configFile) modelFile = params["files"]["mmvcv13Model"] if modelFile.endswith(".onnx"): self.settings.pyTorchModelFile = None self.settings.onnxModelFile = modelFile else: self.settings.pyTorchModelFile = modelFile self.settings.onnxModelFile = None # PyTorchモデル生成 if self.settings.pyTorchModelFile is not None: self.net_g = SynthesizerTrn( len(symbols), self.hps.data.filter_length // 2 + 1, self.hps.train.segment_size // self.hps.data.hop_length, n_speakers=self.hps.data.n_speakers, **self.hps.model ) self.net_g.eval() load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None) # ONNXモデル生成 if self.settings.onnxModelFile is not None: # ort_options = onnxruntime.SessionOptions() # ort_options.intra_op_num_threads = 8 # ort_options.execution_mode = ort_options.ExecutionMode.ORT_PARALLEL # ort_options.inter_op_num_threads = 8 providers, options = self.getOnnxExecutionProvider() self.onnx_session = onnxruntime.InferenceSession( self.settings.onnxModelFile, providers=providers, provider_options=options, ) return self.get_info() def getOnnxExecutionProvider(self): if self.settings.gpu >= 0: return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}] elif "DmlExecutionProvider" in onnxruntime.get_available_providers(): return ["DmlExecutionProvider"], [] else: return ["CPUExecutionProvider"], [ { "intra_op_num_threads": 8, "execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL, "inter_op_num_threads": 8, } ] def isOnnx(self): if self.settings.onnxModelFile is not None: return True else: return False def update_settings(self, key: str, val: int | float | str): if key in self.settings.intData: val = int(val) setattr(self.settings, key, val) if key == "gpu" and self.isOnnx(): providers, options = self.getOnnxExecutionProvider() self.onnx_session = onnxruntime.InferenceSession( self.settings.onnxModelFile, providers=providers, provider_options=options, ) # providers = self.onnx_session.get_providers() # print("Providers:", providers) # if "CUDAExecutionProvider" in providers: # provider_options = [{"device_id": self.settings.gpu}] # self.onnx_session.set_providers( # providers=["CUDAExecutionProvider"], # provider_options=provider_options, # ) elif key in self.settings.floatData: setattr(self.settings, key, float(val)) elif key in self.settings.strData: setattr(self.settings, key, str(val)) else: return False return True def get_info(self): data = asdict(self.settings) data["onnxExecutionProviders"] = ( self.onnx_session.get_providers() if self.onnx_session is not None else [] ) files = ["configFile", "pyTorchModelFile", "onnxModelFile"] for f in files: if data[f] is not None and os.path.exists(data[f]): data[f] = os.path.basename(data[f]) else: data[f] = "" return data def get_processing_sampling_rate(self): if hasattr(self, "hps") is False: raise NoModeLoadedException("config") return self.hps.data.sampling_rate def _get_spec(self, audio: AudioInOut): spec = spectrogram_torch( audio, self.hps.data.filter_length, self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length, center=False, ) spec = torch.squeeze(spec, 0) return spec def generate_input( self, newData: AudioInOut, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0, ): newData = newData.astype(np.float32) / self.hps.data.max_wav_value if self.audio_buffer is not None: self.audio_buffer = np.concatenate( [self.audio_buffer, newData], 0 ) # 過去のデータに連結 else: self.audio_buffer = newData convertSize = inputSize + crossfadeSize + solaSearchFrame if convertSize < 8192: convertSize = 8192 if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 convertSize = convertSize + ( self.hps.data.hop_length - (convertSize % self.hps.data.hop_length) ) convertOffset = -1 * convertSize self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出 audio = torch.FloatTensor(self.audio_buffer) audio_norm = audio.unsqueeze(0) # unsqueeze spec = self._get_spec(audio_norm) sid = torch.LongTensor([int(self.settings.srcId)]) data = (self.text_norm, spec, audio_norm, sid) data = TextAudioSpeakerCollate()([data]) return data def _onnx_inference(self, data): if hasattr(self, "onnx_session") is False or self.onnx_session is None: print("[Voice Changer] No ONNX session.") raise NoModeLoadedException("ONNX") x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data] sid_tgt1 = torch.LongTensor([self.settings.dstId]) # if spec.size()[2] >= 8: audio1 = ( self.onnx_session.run( ["audio"], { "specs": spec.numpy(), "lengths": spec_lengths.numpy(), "sid_src": sid_src.numpy(), "sid_tgt": sid_tgt1.numpy(), }, )[0][0, 0] * self.hps.data.max_wav_value ) return audio1 def _pyTorch_inference(self, data): if hasattr(self, "net_g") is False or self.net_g is None: print("[Voice Changer] No pyTorch session.") raise NoModeLoadedException("pytorch") if self.settings.gpu < 0 or self.gpu_num == 0: dev = torch.device("cpu") else: dev = torch.device("cuda", index=self.settings.gpu) with torch.no_grad(): x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [ x.to(dev) for x in data ] sid_target = torch.LongTensor([self.settings.dstId]).to(dev) audio1 = ( self.net_g.to(dev) .voice_conversion( spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_target )[0, 0] .data * self.hps.data.max_wav_value ) result = audio1.float().cpu().numpy() return result def inference(self, data): if self.isOnnx(): audio = self._onnx_inference(data) else: audio = self._pyTorch_inference(data) return audio def __del__(self): del self.net_g del self.onnx_session remove_path = os.path.join("MMVC_Client_v13", "python") sys.path = [x for x in sys.path if x.endswith(remove_path) is False] for key in list(sys.modules): val = sys.modules.get(key) try: file_path = val.__file__ if file_path.find(remove_path + os.path.sep) >= 0: print("remove", key, file_path) sys.modules.pop(key) except: # type:ignore pass