import os
import glob
import re
import sys
import argparse
import logging
import json
import subprocess
import warnings
import functools

import numpy as np
from scipy.io.wavfile import read
import torch

MATPLOTLIB_FLAG = False

# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging

f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)


# def normalize_f0(f0, random_scale=True):
#     f0_norm = f0.clone()  # create a copy of the input Tensor
#     batch_size, _, frame_length = f0_norm.shape
#     for i in range(batch_size):
#         means = torch.mean(f0_norm[i, 0, :])
#         if random_scale:
#             factor = random.uniform(0.8, 1.2)
#         else:
#             factor = 1
#         f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
#     return f0_norm
# def normalize_f0(f0, random_scale=True):
#     means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
#     if random_scale:
#         factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
#     else:
#         factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
#     f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
#     return f0_norm


def deprecated(func):
    """This is a decorator which can be used to mark functions
    as deprecated. It will result in a warning being emitted
    when the function is used."""

    @functools.wraps(func)
    def new_func(*args, **kwargs):
        warnings.simplefilter("always", DeprecationWarning)  # turn off filter
        warnings.warn("Call to deprecated function {}.".format(func.__name__), category=DeprecationWarning, stacklevel=2)
        warnings.simplefilter("default", DeprecationWarning)  # reset filter
        return func(*args, **kwargs)

    return new_func


def normalize_f0(f0, x_mask, uv, random_scale=True):
    # calculate means based on x_mask
    uv_sum = torch.sum(uv, dim=1, keepdim=True)
    uv_sum[uv_sum == 0] = 9999
    means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum

    if random_scale:
        factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
    else:
        factor = torch.ones(f0.shape[0], 1).to(f0.device)
    # normalize f0 based on means and factor
    f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
    if torch.isnan(f0_norm).any():
        exit(0)
    return f0_norm * x_mask


def compute_f0_uv_torchcrepe(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512, device=None):
    from .modules.crepe import CrepePitchExtractor

    x = wav_numpy
    if p_len is None:
        p_len = x.shape[0] // hop_length
    else:
        assert abs(p_len - x.shape[0] // hop_length) < 4, "pad length error"

    f0_min = 50
    f0_max = 1100
    F0Creper = CrepePitchExtractor(hop_length=hop_length, f0_min=f0_min, f0_max=f0_max, device=device)
    f0, uv = F0Creper(x[None, :].float(), sampling_rate, pad_to=p_len)
    return f0, uv


def plot_data_to_numpy(x, y):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib

        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger("matplotlib")
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(10, 2))
    plt.plot(x)
    plt.plot(y)
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def interpolate_f0(f0):
    """
    对F0进行插值处理
    """

    data = np.reshape(f0, (f0.size, 1))

    vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
    vuv_vector[data > 0.0] = 1.0
    vuv_vector[data <= 0.0] = 0.0

    ip_data = data

    frame_number = data.size
    last_value = 0.0
    for i in range(frame_number):
        if data[i] <= 0.0:
            j = i + 1
            for j in range(i + 1, frame_number):
                if data[j] > 0.0:
                    break
            if j < frame_number - 1:
                if last_value > 0.0:
                    step = (data[j] - data[i - 1]) / float(j - i)
                    for k in range(i, j):
                        ip_data[k] = data[i - 1] + step * (k - i + 1)
                else:
                    for k in range(i, j):
                        ip_data[k] = data[j]
            else:
                for k in range(i, frame_number):
                    ip_data[k] = last_value
        else:
            ip_data[i] = data[i]  # 这里可能存在一个没有必要的拷贝
            last_value = data[i]

    return ip_data[:, 0], vuv_vector[:, 0]


def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
    import parselmouth

    x = wav_numpy
    if p_len is None:
        p_len = x.shape[0] // hop_length
    else:
        assert abs(p_len - x.shape[0] // hop_length) < 4, "pad length error"
    time_step = hop_length / sampling_rate * 1000
    f0_min = 50
    f0_max = 1100
    f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(time_step=time_step / 1000, voicing_threshold=0.6, pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array["frequency"]

    pad_size = (p_len - len(f0) + 1) // 2
    if pad_size > 0 or p_len - len(f0) - pad_size > 0:
        f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
    return f0


def resize_f0(x, target_len):
    source = np.array(x)
    source[source < 0.001] = np.nan
    target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), source)
    res = np.nan_to_num(target)
    return res


def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
    import pyworld

    if p_len is None:
        p_len = wav_numpy.shape[0] // hop_length
    f0, t = pyworld.dio(
        wav_numpy.astype(np.double),
        fs=sampling_rate,
        f0_ceil=800,
        frame_period=1000 * hop_length / sampling_rate,
    )
    f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
    for index, pitch in enumerate(f0):
        f0[index] = round(pitch, 1)
    return resize_f0(f0, p_len)


def f0_to_coarse(f0):
    is_torch = isinstance(f0, torch.Tensor)
    f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
    f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1

    f0_mel[f0_mel <= 1] = 1
    f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
    f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
    assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
    return f0_coarse


def get_hubert_model():
    vec_path = "hubert/checkpoint_best_legacy_500.pt"
    print("load model(s) from {}".format(vec_path))
    from fairseq import checkpoint_utils

    models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
        [vec_path],
        suffix="",
    )
    model = models[0]
    model.eval()
    return model


def get_hubert_content(hmodel, wav_16k_tensor):
    feats = wav_16k_tensor
    if feats.dim() == 2:  # double channels
        feats = feats.mean(-1)
    assert feats.dim() == 1, feats.dim()
    feats = feats.view(1, -1)
    padding_mask = torch.BoolTensor(feats.shape).fill_(False)
    inputs = {
        "source": feats.to(wav_16k_tensor.device),
        "padding_mask": padding_mask.to(wav_16k_tensor.device),
        "output_layer": 9,  # layer 9
    }
    with torch.no_grad():
        logits = hmodel.extract_features(**inputs)
        feats = hmodel.final_proj(logits[0])
    return feats.transpose(1, 2)


def get_content(cmodel, y):
    with torch.no_grad():
        c = cmodel.extract_features(y.squeeze(1))[0]
    c = c.transpose(1, 2)
    return c


def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
    iteration = checkpoint_dict["iteration"]
    learning_rate = checkpoint_dict["learning_rate"]
    if optimizer is not None and not skip_optimizer and checkpoint_dict["optimizer"] is not None:
        optimizer.load_state_dict(checkpoint_dict["optimizer"])
    saved_state_dict = checkpoint_dict["model"]
    if hasattr(model, "module"):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            # assert "dec" in k or "disc" in k
            # print("load", k)
            new_state_dict[k] = saved_state_dict[k]
            assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
        except:
            print("error, %s is not in the checkpoint" % k)
            logger.info("%s is not in the checkpoint" % k)
            new_state_dict[k] = v
    if hasattr(model, "module"):
        model.module.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(new_state_dict)
    print("load ")
    logger.info("Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration))
    return model, optimizer, learning_rate, iteration


def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
    logger.info("Saving model and optimizer state at iteration {} to {}".format(iteration, checkpoint_path))
    if hasattr(model, "module"):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    torch.save({"model": state_dict, "iteration": iteration, "optimizer": optimizer.state_dict(), "learning_rate": learning_rate}, checkpoint_path)


def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
    """Freeing up space by deleting saved ckpts

    Arguments:
    path_to_models    --  Path to the model directory
    n_ckpts_to_keep   --  Number of ckpts to keep, excluding G_0.pth and D_0.pth
    sort_by_time      --  True -> chronologically delete ckpts
                          False -> lexicographically delete ckpts
    """
    ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
    name_key = lambda _f: int(re.compile("._(\d+)\.pth").match(_f).group(1))  # NOQA
    time_key = lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))  # NOQA
    sort_key = time_key if sort_by_time else name_key
    x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], key=sort_key)  # NOQA
    to_del = [os.path.join(path_to_models, fn) for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])]
    del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")  # NOQA
    del_routine = lambda x: [os.remove(x), del_info(x)]  # NOQA
    rs = [del_routine(fn) for fn in to_del]  # NOQA


def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
    for k, v in scalars.items():
        writer.add_scalar(k, v, global_step)
    for k, v in histograms.items():
        writer.add_histogram(k, v, global_step)
    for k, v in images.items():
        writer.add_image(k, v, global_step, dataformats="HWC")
    for k, v in audios.items():
        writer.add_audio(k, v, global_step, audio_sampling_rate)


def latest_checkpoint_path(dir_path, regex="G_*.pth"):
    f_list = glob.glob(os.path.join(dir_path, regex))
    f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
    x = f_list[-1]
    print(x)
    return x


def plot_spectrogram_to_numpy(spectrogram):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib

        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger("matplotlib")
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def plot_alignment_to_numpy(alignment, info=None):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib

        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger("matplotlib")
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(6, 4))
    im = ax.imshow(alignment.transpose(), aspect="auto", origin="lower", interpolation="none")
    fig.colorbar(im, ax=ax)
    xlabel = "Decoder timestep"
    if info is not None:
        xlabel += "\n\n" + info
    plt.xlabel(xlabel)
    plt.ylabel("Encoder timestep")
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def load_wav_to_torch(full_path):
    sampling_rate, data = read(full_path)
    return torch.FloatTensor(data.astype(np.float32)), sampling_rate


def load_filepaths_and_text(filename, split="|"):
    with open(filename, encoding="utf-8") as f:
        filepaths_and_text = [line.strip().split(split) for line in f]
    return filepaths_and_text


def get_hparams(init=True):
    parser = argparse.ArgumentParser()
    parser.add_argument("-c", "--config", type=str, default="./configs/base.json", help="JSON file for configuration")
    parser.add_argument("-m", "--model", type=str, required=True, help="Model name")

    args = parser.parse_args()
    model_dir = os.path.join("./logs", args.model)

    if not os.path.exists(model_dir):
        os.makedirs(model_dir)

    config_path = args.config
    config_save_path = os.path.join(model_dir, "config.json")
    if init:
        with open(config_path, "r") as f:
            data = f.read()
        with open(config_save_path, "w") as f:
            f.write(data)
    else:
        with open(config_save_path, "r") as f:
            data = f.read()
    config = json.loads(data)

    hparams = HParams(**config)
    hparams.model_dir = model_dir
    return hparams


def get_hparams_from_dir(model_dir):
    config_save_path = os.path.join(model_dir, "config.json")
    with open(config_save_path, "r") as f:
        data = f.read()
    config = json.loads(data)

    hparams = HParams(**config)
    hparams.model_dir = model_dir
    return hparams


def get_hparams_from_file(config_path):
    with open(config_path, "r") as f:
        data = f.read()
    config = json.loads(data)

    hparams = HParams(**config)
    return hparams


def check_git_hash(model_dir):
    source_dir = os.path.dirname(os.path.realpath(__file__))
    if not os.path.exists(os.path.join(source_dir, ".git")):
        logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(source_dir))
        return

    cur_hash = subprocess.getoutput("git rev-parse HEAD")

    path = os.path.join(model_dir, "githash")
    if os.path.exists(path):
        saved_hash = open(path).read()
        if saved_hash != cur_hash:
            logger.warn("git hash values are different. {}(saved) != {}(current)".format(saved_hash[:8], cur_hash[:8]))
    else:
        open(path, "w").write(cur_hash)


def get_logger(model_dir, filename="train.log"):
    global logger
    logger = logging.getLogger(os.path.basename(model_dir))
    logger.setLevel(logging.DEBUG)

    formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    h = logging.FileHandler(os.path.join(model_dir, filename))
    h.setLevel(logging.DEBUG)
    h.setFormatter(formatter)
    logger.addHandler(h)
    return logger


def repeat_expand_2d(content, target_len):
    # content : [h, t]

    src_len = content.shape[-1]
    target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
    temp = torch.arange(src_len + 1) * target_len / src_len
    current_pos = 0
    for i in range(target_len):
        if i < temp[current_pos + 1]:
            target[:, i] = content[:, current_pos]
        else:
            current_pos += 1
            target[:, i] = content[:, current_pos]

    return target


class HParams:
    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            if type(v) == dict:
                v = HParams(**v)
            self[k] = v

    def keys(self):
        return self.__dict__.keys()

    def items(self):
        return self.__dict__.items()

    def values(self):
        return self.__dict__.values()

    def __len__(self):
        return len(self.__dict__)

    def __getitem__(self, key):
        return getattr(self, key)

    def __setitem__(self, key, value):
        return setattr(self, key, value)

    def __contains__(self, key):
        return key in self.__dict__

    def __repr__(self):
        return self.__dict__.__repr__()