from const import EnumEmbedderTypes, EnumInferenceTypes from voice_changer.RVC.ModelSlot import ModelSlot from voice_changer.utils.LoadModelParams import FilePaths import torch import onnxruntime import json def generateModelSlot(files: FilePaths, params): modelSlot = ModelSlot() modelSlot.pyTorchModelFile = files.pyTorchModelFilename modelSlot.onnxModelFile = files.onnxModelFilename modelSlot.featureFile = files.featureFilename modelSlot.indexFile = files.indexFilename modelSlot.defaultTrans = params["trans"] if "trans" in params else 0 modelSlot.isONNX = True if modelSlot.onnxModelFile is not None else False if modelSlot.isONNX: _setInfoByONNX(modelSlot, modelSlot.onnxModelFile) else: _setInfoByPytorch(modelSlot, modelSlot.pyTorchModelFile) return modelSlot def _setInfoByPytorch(slot: ModelSlot, file: str): cpt = torch.load(file, map_location="cpu") config_len = len(cpt["config"]) if config_len == 18: slot.f0 = True if cpt["f0"] == 1 else False slot.modelType = ( EnumInferenceTypes.pyTorchRVC if slot.f0 else EnumInferenceTypes.pyTorchRVCNono ) slot.embChannels = 256 slot.embedder = EnumEmbedderTypes.hubert else: slot.f0 = True if cpt["f0"] == 1 else False slot.modelType = ( EnumInferenceTypes.pyTorchWebUI if slot.f0 else EnumInferenceTypes.pyTorchWebUINono ) slot.embChannels = cpt["config"][17] slot.embedder = cpt["embedder_name"] if slot.embedder.endswith("768"): slot.embedder = slot.embedder[:-3] if slot.embedder == EnumEmbedderTypes.hubert.value: slot.embedder = EnumEmbedderTypes.hubert elif slot.embedder == EnumEmbedderTypes.contentvec.value: slot.embedder = EnumEmbedderTypes.contentvec elif slot.embedder == EnumEmbedderTypes.hubert_jp.value: slot.embedder = EnumEmbedderTypes.hubert_jp else: raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder") slot.samplingRate = cpt["config"][-1] del cpt def _setInfoByONNX(slot: ModelSlot, file: str): tmp_onnx_session = onnxruntime.InferenceSession( file, providers=["CPUExecutionProvider"] ) modelmeta = tmp_onnx_session.get_modelmeta() try: metadata = json.loads(modelmeta.custom_metadata_map["metadata"]) # slot.modelType = metadata["modelType"] slot.embChannels = metadata["embChannels"] if "embedder" not in metadata: slot.embedder = EnumEmbedderTypes.hubert elif metadata["embedder"] == EnumEmbedderTypes.hubert.value: slot.embedder = EnumEmbedderTypes.hubert elif metadata["embedder"] == EnumEmbedderTypes.contentvec.value: slot.embedder = EnumEmbedderTypes.contentvec elif metadata["embedder"] == EnumEmbedderTypes.hubert_jp.value: slot.embedder = EnumEmbedderTypes.hubert_jp else: raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder") slot.f0 = metadata["f0"] slot.modelType = ( EnumInferenceTypes.onnxRVC if slot.f0 else EnumInferenceTypes.onnxRVCNono ) slot.samplingRate = metadata["samplingRate"] slot.deprecated = False except Exception as e: slot.modelType = EnumInferenceTypes.onnxRVC slot.embChannels = 256 slot.embedder = EnumEmbedderTypes.hubert slot.f0 = True slot.samplingRate = 48000 slot.deprecated = True print("[Voice Changer] setInfoByONNX", e) print("[Voice Changer] ############## !!!! CAUTION !!!! ####################") print("[Voice Changer] This onnxfie is depricated. Please regenerate onnxfile.") print("[Voice Changer] ############## !!!! CAUTION !!!! ####################") del tmp_onnx_session