from dataclasses import asdict import numpy as np import torch import torchaudio from data.ModelSlot import RVCModelSlot from mods.log_control import VoiceChangaerLogger from voice_changer.RVC.RVCSettings import RVCSettings from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager from voice_changer.utils.VoiceChangerModel import AudioInOut, PitchfInOut, FeatureInOut, VoiceChangerModel from voice_changer.utils.VoiceChangerParams import VoiceChangerParams from voice_changer.RVC.onnxExporter.export2onnx import export2onnx from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager from voice_changer.RVC.pipeline.Pipeline import Pipeline from Exceptions import DeviceCannotSupportHalfPrecisionException, PipelineCreateException, PipelineNotInitializedException logger = VoiceChangaerLogger.get_instance().getLogger() class RVC(VoiceChangerModel): def __init__(self, params: VoiceChangerParams, slotInfo: RVCModelSlot): logger.info("[Voice Changer] [RVC] Creating instance ") self.deviceManager = DeviceManager.get_instance() EmbedderManager.initialize(params) PitchExtractorManager.initialize(params) self.settings = RVCSettings() self.params = params # self.pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector, self.settings.gpu) self.pipeline: Pipeline | None = None self.audio_buffer: AudioInOut | None = None self.pitchf_buffer: PitchfInOut | None = None self.feature_buffer: FeatureInOut | None = None self.prevVol = 0.0 self.slotInfo = slotInfo # self.initialize() def initialize(self): logger.info("[Voice Changer][RVC] Initializing... ") # pipelineの生成 try: self.pipeline = createPipeline(self.slotInfo, self.settings.gpu, self.settings.f0Detector) except PipelineCreateException as e: # NOQA logger.error("[Voice Changer] pipeline create failed. check your model is valid.") return # その他の設定 self.settings.tran = self.slotInfo.defaultTune self.settings.indexRatio = self.slotInfo.defaultIndexRatio self.settings.protect = self.slotInfo.defaultProtect logger.info("[Voice Changer] [RVC] Initializing... done") def update_settings(self, key: str, val: int | float | str): logger.info(f"[Voice Changer][RVC]: update_settings {key}:{val}") if key in self.settings.intData: setattr(self.settings, key, int(val)) if key == "gpu": self.deviceManager.setForceTensor(False) self.initialize() elif key in self.settings.floatData: setattr(self.settings, key, float(val)) elif key in self.settings.strData: setattr(self.settings, key, str(val)) if key == "f0Detector" and self.pipeline is not None: pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector, self.settings.gpu) self.pipeline.setPitchExtractor(pitchExtractor) else: return False return True def get_info(self): data = asdict(self.settings) if self.pipeline is not None: pipelineInfo = self.pipeline.getPipelineInfo() data["pipelineInfo"] = pipelineInfo else: data["pipelineInfo"] = "None" return data def get_processing_sampling_rate(self): return self.slotInfo.samplingRate def generate_input( self, newData: AudioInOut, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0, ): newData = newData.astype(np.float32) / 32768.0 # RVCのモデルのサンプリングレートで入ってきている。(extraDataLength, Crossfade等も同じSRで処理)(★1) # ↑newData.shape[0]//sampleRate でデータ秒数。これに16000かけてhubertの世界でのデータ長。これにhop数(160)でわるとfeatsのデータサイズになる。 new_feature_length = newData.shape[0] * 100 // self.slotInfo.samplingRate if self.audio_buffer is not None: # 過去のデータに連結 self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) if self.slotInfo.f0: self.pitchf_buffer = np.concatenate([self.pitchf_buffer, np.zeros(new_feature_length)], 0) self.feature_buffer = np.concatenate([self.feature_buffer, np.zeros([new_feature_length, self.slotInfo.embChannels])], 0) else: self.audio_buffer = newData if self.slotInfo.f0: self.pitchf_buffer = np.zeros(new_feature_length) self.feature_buffer = np.zeros([new_feature_length, self.slotInfo.embChannels]) convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。 convertSize = convertSize + (128 - (convertSize % 128)) outSize = convertSize - self.settings.extraConvertSize # バッファがたまっていない場合はzeroで補う if self.audio_buffer.shape[0] < convertSize: self.audio_buffer = np.concatenate([np.zeros([convertSize]), self.audio_buffer]) if self.slotInfo.f0: self.pitchf_buffer = np.concatenate([np.zeros([convertSize * 100 // self.slotInfo.samplingRate]), self.pitchf_buffer]) self.feature_buffer = np.concatenate([np.zeros([convertSize * 100 // self.slotInfo.samplingRate, self.slotInfo.embChannels]), self.feature_buffer]) convertOffset = -1 * convertSize featureOffset = -convertSize * 100 // self.slotInfo.samplingRate self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出 if self.slotInfo.f0: self.pitchf_buffer = self.pitchf_buffer[featureOffset:] self.feature_buffer = self.feature_buffer[featureOffset:] # 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする) cropOffset = -1 * (inputSize + crossfadeSize) cropEnd = -1 * (crossfadeSize) crop = self.audio_buffer[cropOffset:cropEnd] vol = np.sqrt(np.square(crop).mean()) vol = max(vol, self.prevVol * 0.0) self.prevVol = vol return (self.audio_buffer, self.pitchf_buffer, self.feature_buffer, convertSize, vol, outSize) def inference(self, data): if self.pipeline is None: logger.info("[Voice Changer] Pipeline is not initialized.111") raise PipelineNotInitializedException() audio = data[0] pitchf = data[1] feature = data[2] convertSize = data[3] vol = data[4] outSize = data[5] if vol < self.settings.silentThreshold: return np.zeros(convertSize).astype(np.int16) * np.sqrt(vol) if self.pipeline is not None: device = self.pipeline.device else: device = torch.device("cpu") audio = torch.from_numpy(audio).to(device=device, dtype=torch.float32) audio = torchaudio.functional.resample(audio, self.slotInfo.samplingRate, 16000, rolloff=0.99) repeat = 1 if self.settings.rvcQuality else 0 sid = self.settings.dstId f0_up_key = self.settings.tran index_rate = self.settings.indexRatio protect = self.settings.protect if_f0 = 1 if self.slotInfo.f0 else 0 embOutputLayer = self.slotInfo.embOutputLayer useFinalProj = self.slotInfo.useFinalProj try: audio_out, self.pitchf_buffer, self.feature_buffer = self.pipeline.exec( sid, audio, pitchf, feature, f0_up_key, index_rate, if_f0, self.settings.extraConvertSize / self.slotInfo.samplingRate if self.settings.silenceFront else 0., # extaraDataSizeの秒数。RVCのモデルのサンプリングレートで処理(★1)。 embOutputLayer, useFinalProj, repeat, protect, outSize ) result = audio_out.detach().cpu().numpy() * np.sqrt(vol) return result except DeviceCannotSupportHalfPrecisionException as e: # NOQA logger.warn("[Device Manager] Device cannot support half precision. Fallback to float....") self.deviceManager.setForceTensor(True) self.initialize() # raise e return def __del__(self): del self.pipeline # print("---------- REMOVING ---------------") # remove_path = os.path.join("RVC") # sys.path = [x for x in sys.path if x.endswith(remove_path) is False] # for key in list(sys.modules): # val = sys.modules.get(key) # try: # file_path = val.__file__ # if file_path.find("RVC" + os.path.sep) >= 0: # # print("remove", key, file_path) # sys.modules.pop(key) # except Exception: # type:ignore # # print(e) # pass def export2onnx(self): modelSlot = self.slotInfo if modelSlot.isONNX: logger.warn("[Voice Changer] export2onnx, No pyTorch filepath.") return {"status": "ng", "path": ""} if self.pipeline is not None: del self.pipeline self.pipeline = None torch.cuda.empty_cache() self.initialize() output_file_simple = export2onnx(self.settings.gpu, modelSlot) return { "status": "ok", "path": f"/tmp/{output_file_simple}", "filename": output_file_simple, } def get_model_current(self): return [ { "key": "defaultTune", "val": self.settings.tran, }, { "key": "defaultIndexRatio", "val": self.settings.indexRatio, }, { "key": "defaultProtect", "val": self.settings.protect, }, ]