import numpy as np from typing import Any import math import torch import torch.nn.functional as F from torch.cuda.amp import autocast from Exceptions import ( DeviceCannotSupportHalfPrecisionException, DeviceChangingException, HalfPrecisionChangingException, NotEnoughDataExtimateF0, ) from voice_changer.RVC.embedder.Embedder import Embedder from voice_changer.RVC.inferencer.Inferencer import Inferencer from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInferencer from voice_changer.RVC.inferencer.OnnxRVCInferencerNono import OnnxRVCInferencerNono from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor class Pipeline(object): embedder: Embedder inferencer: Inferencer pitchExtractor: PitchExtractor index: Any | None big_npy: Any | None # feature: Any | None targetSR: int device: torch.device isHalf: bool def __init__( self, embedder: Embedder, inferencer: Inferencer, pitchExtractor: PitchExtractor, index: Any | None, # feature: Any | None, targetSR, device, isHalf, ): self.embedder = embedder self.inferencer = inferencer self.pitchExtractor = pitchExtractor print("GENERATE INFERENCER", self.inferencer) print("GENERATE EMBEDDER", self.embedder) print("GENERATE PITCH EXTRACTOR", self.pitchExtractor) self.index = index self.big_npy = index.reconstruct_n(0, index.ntotal) if index is not None else None # self.feature = feature self.targetSR = targetSR self.device = device self.isHalf = isHalf self.sr = 16000 self.window = 160 def getPipelineInfo(self): inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {} embedderInfo = self.embedder.getEmbedderInfo() pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo() return {"inferencer": inferencerInfo, "embedder": embedderInfo, "pitchExtractor": pitchExtractorInfo, "isHalf": self.isHalf} def setPitchExtractor(self, pitchExtractor: PitchExtractor): self.pitchExtractor = pitchExtractor def exec( self, sid, audio, # torch.tensor [n] pitchf, # np.array [m] feature, # np.array [m, feat] f0_up_key, index_rate, if_f0, silence_front, embOutputLayer, useFinalProj, repeat, protect=0.5, out_size=None, ): # 16000のサンプリングレートで入ってきている。以降この世界は16000で処理。 search_index = self.index is not None and self.big_npy is not None and index_rate != 0 # self.t_pad = self.sr * repeat # 1秒 # self.t_pad_tgt = self.targetSR * repeat # 1秒 出力時のトリミング(モデルのサンプリングで出力される) audio = audio.unsqueeze(0) quality_padding_sec = (repeat * (audio.shape[1] - 1)) / self.sr # padding(reflect)のサイズは元のサイズより小さい必要がある。 self.t_pad = round(self.sr * quality_padding_sec) # 前後に音声を追加 self.t_pad_tgt = round(self.targetSR * quality_padding_sec) # 前後に音声を追加 出力時のトリミング(モデルのサンプリングで出力される) audio_pad = F.pad(audio, (self.t_pad, self.t_pad), mode="reflect").squeeze(0) p_len = audio_pad.shape[0] // self.window sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() # RVC QualityがOnのときにはsilence_frontをオフに。 silence_front = silence_front if repeat == 0 else 0 pitchf = pitchf if repeat == 0 else np.zeros(p_len) out_size = out_size if repeat == 0 else None # ピッチ検出 try: if if_f0 == 1: pitch, pitchf = self.pitchExtractor.extract( audio_pad, pitchf, f0_up_key, self.sr, self.window, silence_front=silence_front, ) # pitch = pitch[:p_len] # pitchf = pitchf[:p_len] pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() pitchf = torch.tensor(pitchf, device=self.device, dtype=torch.float).unsqueeze(0) else: pitch = None pitchf = None except IndexError: # print(e) raise NotEnoughDataExtimateF0() # tensor型調整 feats = audio_pad if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) # embedding padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) with autocast(enabled=self.isHalf): try: feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj) if torch.isnan(feats).all(): raise DeviceCannotSupportHalfPrecisionException() except RuntimeError as e: if "HALF" in e.__str__().upper(): raise HalfPrecisionChangingException() elif "same device" in e.__str__(): raise DeviceChangingException() else: raise e if protect < 0.5 and search_index: feats0 = feats.clone() # Index - feature抽出 # if self.index is not None and self.feature is not None and index_rate != 0: if search_index: npy = feats[0].cpu().numpy() # apply silent front for indexsearch npyOffset = math.floor(silence_front * 16000) // 360 npy = npy[npyOffset:] if self.isHalf is True: npy = npy.astype("float32") # TODO: kは調整できるようにする k = 1 if k == 1: _, ix = self.index.search(npy, 1) npy = self.big_npy[ix.squeeze()] else: score, ix = self.index.search(npy, k=8) weight = np.square(1 / score) weight /= weight.sum(axis=1, keepdims=True) npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) # recover silient font npy = np.concatenate([np.zeros([npyOffset, npy.shape[1]], dtype=np.float32), feature[:npyOffset:2].astype("float32"), npy])[-feats.shape[1]:] feats = torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) if protect < 0.5 and search_index: feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) # ピッチサイズ調整 p_len = audio_pad.shape[0] // self.window if feats.shape[1] < p_len: p_len = feats.shape[1] if pitch is not None and pitchf is not None: pitch = pitch[:, :p_len] pitchf = pitchf[:, :p_len] feats_len = feats.shape[1] if pitch is not None and pitchf is not None: pitch = pitch[:, -feats_len:] pitchf = pitchf[:, -feats_len:] p_len = torch.tensor([feats_len], device=self.device).long() # pitchの推定が上手くいかない(pitchf=0)場合、検索前の特徴を混ぜる # pitchffの作り方の疑問はあるが、本家通りなので、このまま使うことにする。 # https://github.com/w-okada/voice-changer/pull/276#issuecomment-1571336929 if protect < 0.5 and search_index: pitchff = pitchf.clone() pitchff[pitchf > 0] = 1 pitchff[pitchf < 1] = protect pitchff = pitchff.unsqueeze(-1) feats = feats * pitchff + feats0 * (1 - pitchff) feats = feats.to(feats0.dtype) p_len = torch.tensor([p_len], device=self.device).long() # apply silent front for inference if type(self.inferencer) in [OnnxRVCInferencer, OnnxRVCInferencerNono]: npyOffset = math.floor(silence_front * 16000) // 360 feats = feats[:, npyOffset * 2 :, :] # NOQA feats_len = feats.shape[1] if pitch is not None and pitchf is not None: pitch = pitch[:, -feats_len:] pitchf = pitchf[:, -feats_len:] p_len = torch.tensor([feats_len], device=self.device).long() # 推論実行 try: with torch.no_grad(): with autocast(enabled=self.isHalf): audio1 = ( torch.clip( self.inferencer.infer(feats, p_len, pitch, pitchf, sid, out_size)[0][0, 0].to(dtype=torch.float32), -1.0, 1.0, ) * 32767.5 ).data.to(dtype=torch.int16) except RuntimeError as e: if "HALF" in e.__str__().upper(): print("11", e) raise HalfPrecisionChangingException() else: raise e feats_buffer = feats.squeeze(0).detach().cpu() if pitchf is not None: pitchf_buffer = pitchf.squeeze(0).detach().cpu() else: pitchf_buffer = None del p_len, padding_mask, pitch, pitchf, feats torch.cuda.empty_cache() # inferで出力されるサンプリングレートはモデルのサンプリングレートになる。 # pipelineに(入力されるときはhubertように16k) if self.t_pad_tgt != 0: offset = self.t_pad_tgt end = -1 * self.t_pad_tgt audio1 = audio1[offset:end] del sid torch.cuda.empty_cache() return audio1, pitchf_buffer, feats_buffer