import torch from torch import nn from torch.nn import functional as F # import modules.attentions as attentions # import modules.commons as commons # import modules.modules as modules from torch.nn import Conv1d, Conv2d from torch.nn.utils import weight_norm, spectral_norm # import utils # from modules.commons import init_weights, get_padding from .modules.commons import get_padding # from vdecoder.hifigan.models import Generator from .vdecoder.hifigan.models import Generator from .utils import f0_to_coarse, normalize_f0 from .modules.modules import ResidualCouplingLayer, Flip, WN, LRELU_SLOPE from .modules.commons import sequence_mask, rand_slice_segments_with_pitch from .modules.attentions import Encoder as attentionsEncoder from .modules.attentions import FFT class ResidualCouplingBlock(nn.Module): def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0): super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.flows = nn.ModuleList() for i in range(n_flows): self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) self.flows.append(Flip()) def forward(self, x, x_mask, g=None, reverse=False): if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x = flow(x, x_mask, g=g, reverse=reverse) return x class Encoder(nn.Module): def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g=None): # print(x.shape,x_lengths.shape) x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs, x_mask class TextEncoder(nn.Module): def __init__(self, out_channels, hidden_channels, kernel_size, n_layers, gin_channels=0, filter_channels=None, n_heads=None, p_dropout=None): super().__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.n_layers = n_layers self.gin_channels = gin_channels self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) self.f0_emb = nn.Embedding(256, hidden_channels) self.enc_ = attentionsEncoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) def forward(self, x, x_mask, f0=None, noice_scale=1): x = x + self.f0_emb(f0).transpose(1, 2) x = self.enc_(x * x_mask, x_mask) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask return z, m, logs, x_mask class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.use_spectral_norm = use_spectral_norm norm_f = weight_norm if use_spectral_norm == False else spectral_norm # NOQA self.convs = nn.ModuleList( [ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), ] ) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm # NOQA self.convs = nn.ModuleList( [ norm_f(Conv1d(1, 16, 15, 1, padding=7)), norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ] ) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(MultiPeriodDiscriminator, self).__init__() periods = [2, 3, 5, 7, 11] discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] self.discriminators = nn.ModuleList(discs) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) y_d_gs.append(y_d_g) fmap_rs.append(fmap_r) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class SpeakerEncoder(torch.nn.Module): def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): super(SpeakerEncoder, self).__init__() self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) self.linear = nn.Linear(model_hidden_size, model_embedding_size) self.relu = nn.ReLU() def forward(self, mels): self.lstm.flatten_parameters() _, (hidden, _) = self.lstm(mels) embeds_raw = self.relu(self.linear(hidden[-1])) return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) def compute_partial_slices(self, total_frames, partial_frames, partial_hop): mel_slices = [] for i in range(0, total_frames - partial_frames, partial_hop): mel_range = torch.arange(i, i + partial_frames) mel_slices.append(mel_range) return mel_slices def embed_utterance(self, mel, partial_frames=128, partial_hop=64): mel_len = mel.size(1) last_mel = mel[:, -partial_frames:] if mel_len > partial_frames: mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) mels = list(mel[:, s] for s in mel_slices) mels.append(last_mel) mels = torch.stack(tuple(mels), 0).squeeze(1) with torch.no_grad(): partial_embeds = self(mels) embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) # embed = embed / torch.linalg.norm(embed, 2) else: with torch.no_grad(): embed = self(last_mel) return embed class F0Decoder(nn.Module): def __init__(self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, spk_channels=0): super().__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.spk_channels = spk_channels self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1) self.decoder = FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.f0_prenet = nn.Conv1d(1, hidden_channels, 3, padding=1) self.cond = nn.Conv1d(spk_channels, hidden_channels, 1) def forward(self, x, norm_f0, x_mask, spk_emb=None): x = torch.detach(x) if spk_emb is not None: x = x + self.cond(spk_emb) x += self.f0_prenet(norm_f0) x = self.prenet(x) * x_mask x = self.decoder(x * x_mask, x_mask) x = self.proj(x) * x_mask return x class SynthesizerTrn(nn.Module): """ Synthesizer for Training """ def __init__(self, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels, ssl_dim, n_speakers, sampling_rate=44100, **kwargs): super().__init__() self.spec_channels = spec_channels self.inter_channels = inter_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.resblock = resblock self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.upsample_rates = upsample_rates self.upsample_initial_channel = upsample_initial_channel self.upsample_kernel_sizes = upsample_kernel_sizes self.segment_size = segment_size self.gin_channels = gin_channels self.ssl_dim = ssl_dim self.emb_g = nn.Embedding(n_speakers, gin_channels) self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2) self.enc_p = TextEncoder(inter_channels, hidden_channels, filter_channels=filter_channels, n_heads=n_heads, n_layers=n_layers, kernel_size=kernel_size, p_dropout=p_dropout) hps = { "sampling_rate": sampling_rate, "inter_channels": inter_channels, "resblock": resblock, "resblock_kernel_sizes": resblock_kernel_sizes, "resblock_dilation_sizes": resblock_dilation_sizes, "upsample_rates": upsample_rates, "upsample_initial_channel": upsample_initial_channel, "upsample_kernel_sizes": upsample_kernel_sizes, "gin_channels": gin_channels, } self.dec = Generator(h=hps) self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) self.f0_decoder = F0Decoder(1, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, spk_channels=gin_channels) self.emb_uv = nn.Embedding(2, hidden_channels) def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None): g = self.emb_g(g).transpose(1, 2) # ssl prenet x_mask = torch.unsqueeze(sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype) x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2) # f0 predict lf0 = 2595.0 * torch.log10(1.0 + f0.unsqueeze(1) / 700.0) / 500 norm_lf0 = normalize_f0(lf0, x_mask, uv) pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g) # encoder z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0)) z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g) # flow z_p = self.flow(z, spec_mask, g=g) z_slice, pitch_slice, ids_slice = rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size) # nsf decoder o = self.dec(z_slice, g=g, f0=pitch_slice) return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False): c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) g = self.emb_g(g).transpose(1, 2) x_mask = torch.unsqueeze(sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype) x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2) if predict_f0: lf0 = 2595.0 * torch.log10(1.0 + f0.unsqueeze(1) / 700.0) / 500 norm_lf0 = normalize_f0(lf0, x_mask, uv, random_scale=False) pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g) f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1) z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale) z = self.flow(z_p, c_mask, g=g, reverse=True) o = self.dec(z * c_mask, g=g, f0=f0) return o