import numpy as np from typing import Any import torch import torch.nn.functional as F from Exceptions import ( DeviceChangingException, HalfPrecisionChangingException, NotEnoughDataExtimateF0, ) from voice_changer.RVC.embedder.Embedder import Embedder from voice_changer.RVC.inferencer.Inferencer import Inferencer from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor # isHalfが変わる場合はPipeline作り直し # device(GPU, isHalf変更が伴わない場合), pitchExtractorの変更は、入れ替えで対応 class Pipeline(object): embedder: Embedder inferencer: Inferencer pitchExtractor: PitchExtractor index: Any | None feature: Any | None targetSR: int device: torch.device isHalf: bool def __init__( self, embedder: Embedder, inferencer: Inferencer, pitchExtractor: PitchExtractor, index: Any | None, feature: Any | None, targetSR, device, isHalf, ): self.embedder = embedder self.inferencer = inferencer self.pitchExtractor = pitchExtractor self.index = index self.feature = feature self.targetSR = targetSR self.device = device self.isHalf = isHalf self.sr = 16000 self.window = 160 self.device = device self.isHalf = isHalf def setDevice(self, device: torch.device): self.device = device self.embedder.setDevice(device) self.inferencer.setDevice(device) def setDirectMLEnable(self, enable: bool): if hasattr(self.inferencer, "setDirectMLEnable"): self.inferencer.setDirectMLEnable(enable) def setPitchExtractor(self, pitchExtractor: PitchExtractor): self.pitchExtractor = pitchExtractor def exec( self, sid, audio, f0_up_key, index_rate, if_f0, silence_front, embChannels, repeat, ): self.t_pad = self.sr * repeat self.t_pad_tgt = self.targetSR * repeat audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") p_len = audio_pad.shape[0] // self.window sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() # ピッチ検出 pitch, pitchf = None, None try: if if_f0 == 1: pitch, pitchf = self.pitchExtractor.extract( audio_pad, f0_up_key, self.sr, self.window, silence_front=silence_front, ) pitch = pitch[:p_len] pitchf = pitchf[:p_len] pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() pitchf = torch.tensor( pitchf, device=self.device, dtype=torch.float ).unsqueeze(0) except IndexError as e: print(e) raise NotEnoughDataExtimateF0() # tensor型調整 feats = torch.from_numpy(audio_pad) if self.isHalf is True: feats = feats.half() else: feats = feats.float() if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() feats = feats.view(1, -1) # embedding padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) try: feats = self.embedder.extractFeatures(feats, embChannels) except RuntimeError as e: if "HALF" in e.__str__().upper(): raise HalfPrecisionChangingException() elif "same device" in e.__str__(): raise DeviceChangingException() else: raise e # Index - feature抽出 if self.index is not None and self.feature is not None and index_rate != 0: npy = feats[0].cpu().numpy() if self.isHalf is True: npy = npy.astype("float32") D, I = self.index.search(npy, 1) npy = self.feature[I.squeeze()] if self.isHalf is True: npy = npy.astype("float16") feats = ( torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats ) feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) # ピッチサイズ調整 p_len = audio_pad.shape[0] // self.window if feats.shape[1] < p_len: p_len = feats.shape[1] if pitch is not None and pitchf is not None: pitch = pitch[:, :p_len] pitchf = pitchf[:, :p_len] p_len = torch.tensor([p_len], device=self.device).long() # 推論実行 try: with torch.no_grad(): audio1 = ( ( self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768 ) .data.cpu() .float() .numpy() .astype(np.int16) ) except RuntimeError as e: if "HALF" in e.__str__().upper(): raise HalfPrecisionChangingException() else: raise e del feats, p_len, padding_mask torch.cuda.empty_cache() if self.t_pad_tgt != 0: offset = self.t_pad_tgt end = -1 * self.t_pad_tgt audio1 = audio1[offset:end] del pitch, pitchf, sid torch.cuda.empty_cache() return audio1