from torchaudio.transforms import Resample import torch import numpy as np from const import PitchExtractorType from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor from voice_changer.DiffusionSVC.pitchExtractor.rmvpe.rmvpe import RMVPE from scipy.ndimage import zoom from voice_changer.utils.VoiceChangerModel import AudioInOut class RMVPEPitchExtractor(PitchExtractor): def __init__(self, file: str, gpu: int): super().__init__() self.pitchExtractorType: PitchExtractorType = "rmvpe" self.f0_min = 50 self.f0_max = 1100 self.uv_interp = True self.input_sr = -1 if torch.cuda.is_available() and gpu >= 0: self.device = torch.device("cuda:" + str(torch.cuda.current_device())) else: self.device = torch.device("cpu") self.rmvpe = RMVPE(model_path=file, is_half=False, device=self.device) def extract(self, audio: AudioInOut, sr: int, block_size: int, model_sr: int, pitch, f0_up_key, silence_front=0): if sr != self.input_sr: self.resamle = Resample(sr, 16000, dtype=torch.int16).to(self.device) self.input_sr = sr audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device) audio_t = self.resamle(audio_t) hop_size = 160 # RMVPE固定 offset_frame_number = silence_front * 16000 start_frame = int(offset_frame_number / hop_size) # frame real_silence_front = start_frame * hop_size / 16000 # 秒 audio_t = audio_t[:, int(np.round(real_silence_front * 16000)):] f0 = self.rmvpe.infer_from_audio_t(audio_t.squeeze(), thred=0.03) desired_hop_size = block_size * 16000 / model_sr desired_f0_length = int(audio_t.shape[1] // desired_hop_size) + 1 resize_factor = desired_f0_length / len(f0) f0 = zoom(f0, resize_factor, order=0) pitch[-f0.shape[0]:] = f0[:pitch.shape[0]] f0 = pitch if self.uv_interp: uv = f0 == 0 if len(f0[~uv]) > 0: f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) f0[f0 < self.f0_min] = self.f0_min f0 = f0 * 2 ** (float(f0_up_key) / 12) return f0