import torch
from torchaudio.transforms import Resample
from ..nsf_hifigan.nvSTFT import STFT  # type: ignore
from ..nsf_hifigan.models import load_model, load_config  # type: ignore


class Vocoder:
    def __init__(self, vocoder_type, vocoder_ckpt, device=None):
        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device

        if vocoder_type == "nsf-hifigan":
            self.vocoder = NsfHifiGAN(vocoder_ckpt, device=device)
        elif vocoder_type == "nsf-hifigan-log10":
            self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device=device)
        else:
            raise ValueError(f" [x] Unknown vocoder: {vocoder_type}")

        self.resample_kernel = {}
        self.vocoder_sample_rate = self.vocoder.sample_rate()
        self.vocoder_hop_size = self.vocoder.hop_size()
        self.dimension = self.vocoder.dimension()

    def extract(self, audio, sample_rate, keyshift=0):
        # resample
        if sample_rate == self.vocoder_sample_rate:
            audio_res = audio
        else:
            key_str = str(sample_rate)
            if key_str not in self.resample_kernel:
                self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width=128).to(self.device)
            audio_res = self.resample_kernel[key_str](audio)

        # extract
        mel = self.vocoder.extract(audio_res, keyshift=keyshift)  # B, n_frames, bins
        return mel

    def infer(self, mel, f0):
        f0 = f0[:, : mel.size(1), 0]  # B, n_frames
        audio = self.vocoder(mel, f0)
        return audio


class NsfHifiGAN(torch.nn.Module):
    def __init__(self, model_path, device=None):
        super().__init__()
        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.model_path = model_path
        self.model = None
        self.h = load_config(model_path)
        self.stft = STFT(self.h.sampling_rate, self.h.num_mels, self.h.n_fft, self.h.win_size, self.h.hop_size, self.h.fmin, self.h.fmax)

    def sample_rate(self):
        return self.h.sampling_rate

    def hop_size(self):
        return self.h.hop_size

    def dimension(self):
        return self.h.num_mels

    def extract(self, audio, keyshift=0):
        mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2)  # B, n_frames, bins
        return mel

    def forward(self, mel, f0):
        if self.model is None:
            print("| Load HifiGAN: ", self.model_path)
            self.model, self.h = load_model(self.model_path, device=self.device)
        with torch.no_grad():
            c = mel.transpose(1, 2)
            audio = self.model(c, f0)
            return audio


class NsfHifiGANLog10(NsfHifiGAN):
    def forward(self, mel, f0):
        if self.model is None:
            print("| Load HifiGAN: ", self.model_path)
            self.model, self.h = load_model(self.model_path, device=self.device)
        with torch.no_grad():
            c = 0.434294 * mel.transpose(1, 2)
            audio = self.model(c, f0)
            return audio