MMVC Server ---- # 起動方法 (1) Datasetを`trainer/dataset`におく ```sh trainer/dataset/ ├── 00_myvoice │ ├── text │ │ ├── emotion001.txt │ │ ├── emotion002.txt ... │ │ └── emotion100.txt │ └── wav │ ├── emotion001.wav │ ├── emotion002.wav ... │ └── emotion100.wav ├── 1205_zundamon │ ├── text │ │ ├── emoNormal_001.txt │ │ ├── emoNormal_002.txt ... │ │ └── emoNormal_100.txt │ └── wav │ ├── emoNormal_001.wav │ ├── emoNormal_002.wav ... │ └── emoNormal_100.wav ├── 344_tsumugi │ ├── text │ │ ├── VOICEACTRESS100_001.txt │ │ ├── VOICEACTRESS100_002.txt ... │ │ └── emoNormal_100.txt │ └── wav │ ├── VOICEACTRESS100_001.wav │ ├── VOICEACTRESS100_002.wav ... │ └── emoNormal_100.wav └── multi_speaker_correspondence.txt ``` (2) start_trainer.shをrootにコピー (3) `bash start_trainer.sh`を実行 (4) Docker内で次のコマンドを実行 batch sizeは適宜調整 ```sh $ cp configs_org/baseconfig.json configs/ $ python3 normalize.py True $ python3 create_dataset.py -f train_config -s 24000 -m dataset/multi_speaker_correspondence.txt $ tensorboard --logdir logs --port 5000 --bind_all & # batch size 変更 $ python3 train_ms.py -c configs/train_config.json -m 20220306_24000 -fg fine_model/G_v15_best.pth -fd fine_model/D_v15_best.pth $ python3 train_ms.py -c configs/train_config.json -m 20220306_24000 ``` (x) テスト ``` $ python3 MMVC_Client/python/conver_test.py -m logs/G_40000.pth -c configs/train_config.json -s 0 -t 101 --input dataset/00_myvoice/wav/emotion011.wav --output dataset/test.wav --f0_scale 3 ``` (X) onnx python3 onnx_export.py --config_file logs/train_config.json --convert_pth logs/G_220000.pth