from typing import Any import torch import torch.nn.functional as F from torch.cuda.amp import autocast from Exceptions import ( DeviceCannotSupportHalfPrecisionException, DeviceChangingException, HalfPrecisionChangingException, NotEnoughDataExtimateF0, ) from voice_changer.DiffusionSVC.inferencer.Inferencer import Inferencer from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor from voice_changer.RVC.embedder.Embedder import Embedder from voice_changer.common.VolumeExtractor import VolumeExtractor from torchaudio.transforms import Resample from voice_changer.utils.Timer import Timer class Pipeline(object): embedder: Embedder inferencer: Inferencer pitchExtractor: PitchExtractor index: Any | None big_npy: Any | None # feature: Any | None targetSR: int device: torch.device isHalf: bool def __init__( self, embedder: Embedder, inferencer: Inferencer, pitchExtractor: PitchExtractor, # index: Any | None, targetSR, device, isHalf, resamplerIn: Resample, resamplerOut: Resample ): self.inferencer = inferencer inferencer_block_size, inferencer_sampling_rate = inferencer.getConfig() self.hop_size = inferencer_block_size * 16000 / inferencer_sampling_rate # 16000はオーディオのサンプルレート。16Kで処理 self.inferencer_block_size = inferencer_block_size self.inferencer_sampling_rate = inferencer_sampling_rate self.volumeExtractor = VolumeExtractor(self.hop_size) self.embedder = embedder self.pitchExtractor = pitchExtractor self.resamplerIn = resamplerIn self.resamplerOut = resamplerOut print("VOLUME EXTRACTOR", self.volumeExtractor) print("GENERATE INFERENCER", self.inferencer) print("GENERATE EMBEDDER", self.embedder) print("GENERATE PITCH EXTRACTOR", self.pitchExtractor) self.targetSR = targetSR self.device = device self.isHalf = False def getPipelineInfo(self): volumeExtractorInfo = self.volumeExtractor.getVolumeExtractorInfo() inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {} embedderInfo = self.embedder.getEmbedderInfo() pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo() return {"volumeExtractor": volumeExtractorInfo, "inferencer": inferencerInfo, "embedder": embedderInfo, "pitchExtractor": pitchExtractorInfo, "isHalf": self.isHalf} def setPitchExtractor(self, pitchExtractor: PitchExtractor): self.pitchExtractor = pitchExtractor @torch.no_grad() def extract_volume_and_mask(self, audio: torch.Tensor, threshold: float): ''' with Timer("[VolumeExt np]") as t: for i in range(100): volume = self.volumeExtractor.extract(audio) time_np = t.secs with Timer("[VolumeExt pt]") as t: for i in range(100): volume_t = self.volumeExtractor.extract_t(audio) time_pt = t.secs print("[Volume np]:", volume) print("[Volume pt]:", volume_t) print("[Perform]:", time_np, time_pt) # -> [Perform]: 0.030178070068359375 0.005780220031738281 (RTX4090) # -> [Perform]: 0.029046058654785156 0.0025115013122558594 (CPU i9 13900KF) # ---> これくらいの処理ならCPU上のTorchでやった方が早い? ''' volume_t = self.volumeExtractor.extract_t(audio) mask = self.volumeExtractor.get_mask_from_volume_t(volume_t, self.inferencer_block_size, threshold=threshold) volume = volume_t.unsqueeze(-1).unsqueeze(0) return volume, mask def exec( self, sid, audio, # torch.tensor [n] pitchf, # np.array [m] feature, # np.array [m, feat] f0_up_key, k_step, infer_speedup, silence_front, embOutputLayer, useFinalProj, protect=0.5 ): # print("---------- pipe line --------------------") with Timer("pre-process") as t: audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device) audio16k = self.resamplerIn(audio_t) volume, mask = self.extract_volume_and_mask(audio16k, threshold=-60.0) sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() n_frames = int(audio16k.size(-1) // self.hop_size + 1) # print("[Timer::1: ]", t.secs) with Timer("pre-process") as t: # ピッチ検出 try: pitch = self.pitchExtractor.extract( audio16k.squeeze(), pitchf, f0_up_key, int(self.hop_size), # 処理のwindowサイズ (44100における512) silence_front=silence_front, ) pitch = torch.tensor(pitch[-n_frames:], device=self.device).unsqueeze(0).long() except IndexError as e: # NOQA raise NotEnoughDataExtimateF0() # tensor型調整 feats = audio16k.squeeze() if feats.dim() == 2: # double channels feats = feats.mean(-1) feats = feats.view(1, -1) # print("[Timer::2: ]", t.secs) with Timer("pre-process") as t: # embedding with autocast(enabled=self.isHalf): try: feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj) if torch.isnan(feats).all(): raise DeviceCannotSupportHalfPrecisionException() except RuntimeError as e: if "HALF" in e.__str__().upper(): raise HalfPrecisionChangingException() elif "same device" in e.__str__(): raise DeviceChangingException() else: raise e feats = F.interpolate(feats.permute(0, 2, 1), size=int(n_frames), mode='nearest').permute(0, 2, 1) # print("[Timer::3: ]", t.secs) with Timer("pre-process") as t: # 推論実行 try: with torch.no_grad(): with autocast(enabled=self.isHalf): audio1 = ( torch.clip( self.inferencer.infer( audio16k, feats, pitch.unsqueeze(-1), volume, mask, sid, k_step, infer_speedup, silence_front=silence_front ).to(dtype=torch.float32), -1.0, 1.0, ) * 32767.5 ).data.to(dtype=torch.int16) except RuntimeError as e: if "HALF" in e.__str__().upper(): print("11", e) raise HalfPrecisionChangingException() else: raise e # print("[Timer::4: ]", t.secs) with Timer("pre-process") as t: # NOQA feats_buffer = feats.squeeze(0).detach().cpu() if pitch is not None: pitch_buffer = pitch.squeeze(0).detach().cpu() else: pitch_buffer = None del pitch, pitchf, feats, sid torch.cuda.empty_cache() audio1 = self.resamplerOut(audio1.float()) # print("[Timer::5: ]", t.secs) return audio1, pitch_buffer, feats_buffer