import os import json import argparse import itertools import math from psutil import cpu_count import torch from torch import nn, optim from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torch.multiprocessing as mp import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.parallel import DataParallel as DP from torch.cuda.amp import autocast, GradScaler import datetime import pytz import time from tqdm import tqdm #import warnings import commons import utils from data_utils import ( TextAudioSpeakerLoader, TextAudioSpeakerCollate, DistributedBucketSampler ) from models import ( SynthesizerTrn, MultiPeriodDiscriminator, ) from losses import ( generator_loss, discriminator_loss, feature_loss, kl_loss ) from mel_processing import mel_spectrogram_torch, spec_to_mel_torch from text.symbols import symbols #stftの警告対策 #warnings.resetwarnings() #warnings.simplefilter('ignore', UserWarning) #warnings.simplefilter('ignore', DeprecationWarning) torch.backends.cudnn.benchmark = True global_step = 0 def main(): """Assume Single Node Multi GPUs Training Only""" assert torch.cuda.is_available(), "CPU training is not allowed." n_gpus = torch.cuda.device_count() os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '8000' hps = utils.get_hparams() mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) def run(rank, n_gpus, hps): global global_step if hps.others.os_type == "windows": backend_type = "gloo" parallel = DP else: # Colab backend_type = "nccl" parallel = DDP if rank == 0: logger = utils.get_logger(hps.model_dir) logger.info(hps) utils.check_git_hash(hps.model_dir) writer = SummaryWriter(log_dir=hps.model_dir) writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) cpu_count = os.cpu_count() if cpu_count > 8: cpu_count = 8 dist.init_process_group(backend=backend_type, init_method='env://', world_size=n_gpus, rank=rank) torch.manual_seed(hps.train.seed) torch.cuda.set_device(rank) train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data, augmentation=hps.augmentation.enable, augmentation_params=hps.augmentation) train_sampler = DistributedBucketSampler( train_dataset, hps.train.batch_size, [96,375,750,1125,1500,1875,2250,2625,3000], num_replicas=n_gpus, rank=rank, shuffle=True) collate_fn = TextAudioSpeakerCollate() train_loader = DataLoader(train_dataset, num_workers=cpu_count, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=train_sampler) if rank == 0: eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, augmentation=False) eval_sampler = DistributedBucketSampler( eval_dataset, hps.train.batch_size, [96,375,750,1125,1500,1875,2250,2625,3000], num_replicas=n_gpus, rank=rank, shuffle=True) eval_loader = DataLoader(eval_dataset, num_workers=cpu_count, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=eval_sampler) net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model).cuda(rank) net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) optim_g = torch.optim.AdamW( net_g.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps) optim_d = torch.optim.AdamW( net_d.parameters(), hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps) net_g = parallel(net_g, device_ids=[rank]) net_d = parallel(net_d, device_ids=[rank]) logger.info('FineTuning : '+str(hps.fine_flag)) if hps.fine_flag: logger.info('Load model : '+str(hps.fine_model_g)) logger.info('Load model : '+str(hps.fine_model_d)) _, _, _, epoch_str = utils.load_checkpoint(hps.fine_model_g, net_g, optim_g) _, _, _, epoch_str = utils.load_checkpoint(hps.fine_model_d, net_d, optim_d) epoch_str = 1 global_step = 0 else: try: _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g) _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d) global_step = (epoch_str - 1) * len(train_loader) except: epoch_str = 1 global_step = 0 scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2) scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2) scaler = GradScaler(enabled=hps.train.fp16_run) for epoch in range(epoch_str, hps.train.epochs + 1): if rank==0: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) else: train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None) scheduler_g.step() scheduler_d.step() def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): net_g, net_d = nets optim_g, optim_d = optims scheduler_g, scheduler_d = schedulers train_loader, eval_loader = loaders if writers is not None: writer, writer_eval = writers train_loader.batch_sampler.set_epoch(epoch) global global_step net_g.train() net_d.train() for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(train_loader, desc="Epoch {}".format(epoch))): x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True) spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True) y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True) speakers = speakers.cuda(rank, non_blocking=True) with autocast(enabled=hps.train.fp16_run): y_hat, attn, ids_slice, x_mask, z_mask,\ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers) mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) y_hat = y_hat.float() y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice # Discriminator y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) with autocast(enabled=False): loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) loss_disc_all = loss_disc optim_d.zero_grad() scaler.scale(loss_disc_all).backward() scaler.unscale_(optim_d) grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) scaler.step(optim_d) with autocast(enabled=hps.train.fp16_run): # Generator y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) with autocast(enabled=False): loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl loss_fm = feature_loss(fmap_r, fmap_g) loss_gen, losses_gen = generator_loss(y_d_hat_g) loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl optim_g.zero_grad() scaler.scale(loss_gen_all).backward() scaler.unscale_(optim_g) grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) scaler.step(optim_g) scaler.update() if rank==0: if global_step % hps.train.log_interval == 0: lr = optim_g.param_groups[0]['lr'] losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] logger.info('Train Epoch: {} [{:.0f}%]'.format( epoch, 100. * batch_idx / len(train_loader))) logger.info(datetime.datetime.now(pytz.timezone('Asia/Tokyo'))) logger.info([x.item() for x in losses] + [global_step, lr]) scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g} scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}) scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}) scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}) scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}) image_dict = { "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy()) } utils.summarize( writer=writer, global_step=global_step, images=image_dict, scalars=scalar_dict) utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_latest_99999999.pth")) utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_latest_99999999.pth")) if global_step % hps.train.eval_interval == 0 and global_step != 0: evaluate(hps, net_g, eval_loader, writer_eval, logger) utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step))) utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step))) utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_latest_99999999.pth")) utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_latest_99999999.pth")) global_step += 1 def evaluate(hps, generator, eval_loader, writer_eval, logger): scalar_dict = {} scalar_dict.update({"loss/g/mel": 0.0, "loss/g/kl": 0.0}) with torch.no_grad(): #evalのデータセットを一周する for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(eval_loader, desc="Epoch {}".format("eval"))): x, x_lengths = x.cuda(0), x_lengths.cuda(0) spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0) y, y_lengths = y.cuda(0), y_lengths.cuda(0) speakers = speakers.cuda(0) #autocastはfp16のおまじない with autocast(enabled=hps.train.fp16_run): #Generator y_hat, attn, ids_slice, x_mask, z_mask,\ (z, z_p, m_p, logs_p, m_q, logs_q) = generator(x, x_lengths, spec, spec_lengths, speakers) mel = spec_to_mel_torch( spec, hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax) y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) y_hat = y_hat.float() y_hat_mel = mel_spectrogram_torch( y_hat.squeeze(1), hps.data.filter_length, hps.data.n_mel_channels, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, hps.data.mel_fmin, hps.data.mel_fmax ) batch_num = batch_idx y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice with autocast(enabled=hps.train.fp16_run): with autocast(enabled=False): loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl scalar_dict["loss/g/mel"] = scalar_dict["loss/g/mel"] + loss_mel scalar_dict["loss/g/kl"] = scalar_dict["loss/g/kl"] + loss_kl #lossをepoch1周の結果をiter単位の平均値に scalar_dict["loss/g/mel"] = scalar_dict["loss/g/mel"] / (batch_num+1) scalar_dict["loss/g/kl"] = scalar_dict["loss/g/kl"] / (batch_num+1) logger.info("loss/g/mel : {} lloss/g/kl : {}".format(str(scalar_dict["loss/g/mel"]), str(scalar_dict["loss/g/kl"]))) utils.summarize( writer=writer_eval, global_step=global_step, scalars=scalar_dict, ) if __name__ == "__main__": main()