from torch import device from const import EnumInferenceTypes from voice_changer.RVC.inferencer.Inferencer import Inferencer from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInferencer from voice_changer.RVC.inferencer.OnnxRVCInferencerNono import OnnxRVCInferencerNono from voice_changer.RVC.inferencer.RVCInferencer import RVCInferencer from voice_changer.RVC.inferencer.RVCInferencerNono import RVCInferencerNono from voice_changer.RVC.inferencer.RVCInferencerv2 import RVCInferencerv2 from voice_changer.RVC.inferencer.RVCInferencerv2Nono import RVCInferencerv2Nono from voice_changer.RVC.inferencer.WebUIInferencer import WebUIInferencer from voice_changer.RVC.inferencer.WebUIInferencerNono import WebUIInferencerNono class InferencerManager: currentInferencer: Inferencer | None = None @classmethod def getInferencer( cls, inferencerType: EnumInferenceTypes, file: str, isHalf: bool, dev: device ) -> Inferencer: cls.currentInferencer = cls.loadInferencer(inferencerType, file, isHalf, dev) return cls.currentInferencer @classmethod def loadInferencer( cls, inferencerType: EnumInferenceTypes, file: str, isHalf: bool, dev: device ) -> Inferencer: if ( inferencerType == EnumInferenceTypes.pyTorchRVC or inferencerType == EnumInferenceTypes.pyTorchRVC.value ): return RVCInferencer().loadModel(file, dev, isHalf) elif ( inferencerType == EnumInferenceTypes.pyTorchRVCNono or inferencerType == EnumInferenceTypes.pyTorchRVCNono.value ): return RVCInferencerNono().loadModel(file, dev, isHalf) elif ( inferencerType == EnumInferenceTypes.pyTorchRVCv2 or inferencerType == EnumInferenceTypes.pyTorchRVCv2.value ): return RVCInferencerv2().loadModel(file, dev, isHalf) elif ( inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono or inferencerType == EnumInferenceTypes.pyTorchRVCv2Nono.value ): return RVCInferencerv2Nono().loadModel(file, dev, isHalf) elif ( inferencerType == EnumInferenceTypes.pyTorchWebUI or inferencerType == EnumInferenceTypes.pyTorchWebUI.value ): return WebUIInferencer().loadModel(file, dev, isHalf) elif ( inferencerType == EnumInferenceTypes.pyTorchWebUINono or inferencerType == EnumInferenceTypes.pyTorchWebUINono.value ): return WebUIInferencerNono().loadModel(file, dev, isHalf) elif ( inferencerType == EnumInferenceTypes.onnxRVC or inferencerType == EnumInferenceTypes.onnxRVC.value ): return OnnxRVCInferencer().loadModel(file, dev, isHalf) elif ( inferencerType == EnumInferenceTypes.onnxRVCNono or inferencerType == EnumInferenceTypes.onnxRVCNono.value ): return OnnxRVCInferencerNono().loadModel(file, dev, isHalf) else: raise RuntimeError("[Voice Changer] Inferencer not found", inferencerType)