import torch from scipy.io.wavfile import write, read import numpy as np import struct, traceback import utils import commons from models import SynthesizerTrn from text.symbols import symbols from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate from mel_processing import spectrogram_torch from text import text_to_sequence, cleaned_text_to_sequence class VoiceChanger(): def __init__(self, config, model): self.hps = utils.get_hparams_from_file(config) self.net_g = SynthesizerTrn( len(symbols), self.hps.data.filter_length // 2 + 1, self.hps.train.segment_size // self.hps.data.hop_length, n_speakers=self.hps.data.n_speakers, **self.hps.model) self.net_g.eval() self.gpu_num = torch.cuda.device_count() utils.load_checkpoint( model, self.net_g, None) print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num})") def destroy(self): del self.net_g def on_request(self, gpu, srcId, dstId, timestamp, wav): # if wav==0: # samplerate, data=read("dummy.wav") # unpackedData = data # else: # unpackedData = np.array(struct.unpack('<%sh'%(len(wav) // struct.calcsize('