import torch from torch import device import onnxruntime from const import EnumInferenceTypes from voice_changer.RVC.inferencer.Inferencer import Inferencer import numpy as np providers = ["CPUExecutionProvider"] class OnnxRVCInferencer(Inferencer): def loadModel(self, file: str, dev: device, isHalf: bool = True): super().setProps(EnumInferenceTypes.onnxRVC, file, dev, isHalf) # ort_options = onnxruntime.SessionOptions() # ort_options.intra_op_num_threads = 8 onnx_session = onnxruntime.InferenceSession(file, providers=providers) # check half-precision first_input_type = onnx_session.get_inputs()[0].type if first_input_type == "tensor(float)": self.isHalf = False else: self.isHalf = True self.model = onnx_session self.setDevice(dev) return self def infer( self, feats: torch.Tensor, pitch_length: torch.Tensor, pitch: torch.Tensor, pitchf: torch.Tensor, sid: torch.Tensor, ) -> torch.Tensor: if pitch is None or pitchf is None: raise RuntimeError("[Voice Changer] Pitch or Pitchf is not found.") # print("INFER1", self.model.get_providers()) # print("INFER2", self.model.get_provider_options()) # print("INFER3", self.model.get_session_options()) if self.isHalf: audio1 = self.model.run( ["audio"], { "feats": feats.cpu().numpy().astype(np.float16), "p_len": pitch_length.cpu().numpy().astype(np.int64), "pitch": pitch.cpu().numpy().astype(np.int64), "pitchf": pitchf.cpu().numpy().astype(np.float32), "sid": sid.cpu().numpy().astype(np.int64), }, ) else: audio1 = self.model.run( ["audio"], { "feats": feats.cpu().numpy().astype(np.float32), "p_len": pitch_length.cpu().numpy().astype(np.int64), "pitch": pitch.cpu().numpy().astype(np.int64), "pitchf": pitchf.cpu().numpy().astype(np.float32), "sid": sid.cpu().numpy().astype(np.int64), }, ) return torch.tensor(np.array(audio1)) def setHalf(self, isHalf: bool): self.isHalf = isHalf pass # raise RuntimeError("half-precision is not changable.", self.isHalf) def setDevice(self, dev: device): index = dev.index type = dev.type if type == "cpu": self.model.set_providers(providers=["CPUExecutionProvider"]) elif type == "cuda": provider_options = [{"device_id": index}] self.model.set_providers( providers=["CUDAExecutionProvider"], provider_options=provider_options, ) else: self.model.set_providers(providers=["CPUExecutionProvider"]) return self def setDirectMLEnable(self, enable: bool): if "DmlExecutionProvider" not in onnxruntime.get_available_providers(): print("[Voice Changer] DML is not available.") return if enable: self.model.set_providers( providers=["DmlExecutionProvider", "CPUExecutionProvider"] ) else: self.model.set_providers(providers=["CPUExecutionProvider"])