import os from const import EnumEmbedderTypes, EnumInferenceTypes import torch import onnxruntime import json from data.ModelSlot import ModelSlot, RVCModelSlot from voice_changer.utils.LoadModelParams import LoadModelParams from voice_changer.utils.ModelSlotGenerator import ModelSlotGenerator class RVCModelSlotGenerator(ModelSlotGenerator): @classmethod def loadModel(cls, props: LoadModelParams): slotInfo: RVCModelSlot = RVCModelSlot() for file in props.files: if file.kind == "rvcModel": slotInfo.modelFile = file.name elif file.kind == "rvcIndex": slotInfo.indexFile = file.name slotInfo.defaultTune = 0 slotInfo.defaultIndexRatio = 0 slotInfo.defaultProtect = 0.5 slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx") slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0] # slotInfo.iconFile = "/assets/icons/noimage.png" if slotInfo.isONNX: cls._setInfoByONNX(slotInfo) else: cls._setInfoByPytorch(slotInfo) return slotInfo @classmethod def _setInfoByPytorch(cls, slot: ModelSlot): cpt = torch.load(slot.modelFile, map_location="cpu") config_len = len(cpt["config"]) if config_len == 18: # Original RVC slot.f0 = True if cpt["f0"] == 1 else False version = cpt.get("version", "v1") if version is None or version == "v1": slot.modelType = EnumInferenceTypes.pyTorchRVC.value if slot.f0 else EnumInferenceTypes.pyTorchRVCNono.value slot.embChannels = 256 slot.embOutputLayer = 9 slot.useFinalProj = True slot.embedder = EnumEmbedderTypes.hubert.value print("[Voice Changer] Official Model(pyTorch) : v1") else: slot.modelType = EnumInferenceTypes.pyTorchRVCv2.value if slot.f0 else EnumInferenceTypes.pyTorchRVCv2Nono.value slot.embChannels = 768 slot.embOutputLayer = 12 slot.useFinalProj = False slot.embedder = EnumEmbedderTypes.hubert.value print("[Voice Changer] Official Model(pyTorch) : v2") else: # DDPN RVC slot.f0 = True if cpt["f0"] == 1 else False slot.modelType = EnumInferenceTypes.pyTorchWebUI.value if slot.f0 else EnumInferenceTypes.pyTorchWebUINono.value slot.embChannels = cpt["config"][17] slot.embOutputLayer = cpt["embedder_output_layer"] if "embedder_output_layer" in cpt else 9 if slot.embChannels == 256: slot.useFinalProj = True else: slot.useFinalProj = False # DDPNモデルの情報を表示 if slot.embChannels == 256 and slot.embOutputLayer == 9 and slot.useFinalProj is True: print("[Voice Changer] DDPN Model(pyTorch) : Official v1 like") elif slot.embChannels == 768 and slot.embOutputLayer == 12 and slot.useFinalProj is False: print("[Voice Changer] DDPN Model(pyTorch): Official v2 like") else: print(f"[Voice Changer] DDPN Model(pyTorch): ch:{slot.embChannels}, L:{slot.embOutputLayer}, FP:{slot.useFinalProj}") slot.embedder = cpt["embedder_name"] if slot.embedder.endswith("768"): slot.embedder = slot.embedder[:-3] # if slot.embedder == EnumEmbedderTypes.hubert.value: # slot.embedder = EnumEmbedderTypes.hubert # elif slot.embedder == EnumEmbedderTypes.contentvec.value: # slot.embedder = EnumEmbedderTypes.contentvec # elif slot.embedder == EnumEmbedderTypes.hubert_jp.value: # slot.embedder = EnumEmbedderTypes.hubert_jp # else: # raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder") slot.samplingRate = cpt["config"][-1] del cpt @classmethod def _setInfoByONNX(cls, slot: ModelSlot): tmp_onnx_session = onnxruntime.InferenceSession(slot.modelFile, providers=["CPUExecutionProvider"]) modelmeta = tmp_onnx_session.get_modelmeta() try: metadata = json.loads(modelmeta.custom_metadata_map["metadata"]) # slot.modelType = metadata["modelType"] slot.embChannels = metadata["embChannels"] slot.embOutputLayer = metadata["embOutputLayer"] if "embOutputLayer" in metadata else 9 slot.useFinalProj = metadata["useFinalProj"] if "useFinalProj" in metadata else True if slot.embChannels == 256 else False if slot.embChannels == 256: slot.useFinalProj = True else: slot.useFinalProj = False # ONNXモデルの情報を表示 if slot.embChannels == 256 and slot.embOutputLayer == 9 and slot.useFinalProj is True: print("[Voice Changer] ONNX Model: Official v1 like") elif slot.embChannels == 768 and slot.embOutputLayer == 12 and slot.useFinalProj is False: print("[Voice Changer] ONNX Model: Official v2 like") else: print(f"[Voice Changer] ONNX Model: ch:{slot.embChannels}, L:{slot.embOutputLayer}, FP:{slot.useFinalProj}") if "embedder" not in metadata: slot.embedder = EnumEmbedderTypes.hubert.value else: slot.embedder = metadata["embedder"] # elif metadata["embedder"] == EnumEmbedderTypes.hubert.value: # slot.embedder = EnumEmbedderTypes.hubert # elif metadata["embedder"] == EnumEmbedderTypes.contentvec.value: # slot.embedder = EnumEmbedderTypes.contentvec # elif metadata["embedder"] == EnumEmbedderTypes.hubert_jp.value: # slot.embedder = EnumEmbedderTypes.hubert_jp # else: # raise RuntimeError("[Voice Changer][setInfoByONNX] unknown embedder") slot.f0 = metadata["f0"] slot.modelType = EnumInferenceTypes.onnxRVC.value if slot.f0 else EnumInferenceTypes.onnxRVCNono.value slot.samplingRate = metadata["samplingRate"] slot.deprecated = False except Exception as e: slot.modelType = EnumInferenceTypes.onnxRVC.value slot.embChannels = 256 slot.embedder = EnumEmbedderTypes.hubert.value slot.f0 = True slot.samplingRate = 48000 slot.deprecated = True print("[Voice Changer] setInfoByONNX", e) print("[Voice Changer] ############## !!!! CAUTION !!!! ####################") print("[Voice Changer] This onnxfie is depricated. Please regenerate onnxfile.") print("[Voice Changer] ############## !!!! CAUTION !!!! ####################") del tmp_onnx_session