voice-changer/demo/MMVC_Trainer/train_ms.py
2022-12-09 13:15:52 +09:00

334 lines
13 KiB
Python
Executable File

import os
import json
import argparse
import itertools
import math
from psutil import cpu_count
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DataParallel as DP
from torch.cuda.amp import autocast, GradScaler
import datetime
import pytz
import time
from tqdm import tqdm
#import warnings
import commons
import utils
from data_utils import (
TextAudioSpeakerLoader,
TextAudioSpeakerCollate,
DistributedBucketSampler
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from text.symbols import symbols
#stftの警告対策
#warnings.resetwarnings()
#warnings.simplefilter('ignore', UserWarning)
#warnings.simplefilter('ignore', DeprecationWarning)
torch.backends.cudnn.benchmark = True
global_step = 0
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '8000'
hps = utils.get_hparams()
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
if hps.others.os_type == "windows":
backend_type = "gloo"
parallel = DP
else: # Colab
backend_type = "nccl"
parallel = DDP
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
cpu_count = os.cpu_count()
if cpu_count > 8:
cpu_count = 8
dist.init_process_group(backend=backend_type, init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data, augmentation=hps.augmentation.enable, augmentation_params=hps.augmentation)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[96,375,750,1125,1500,1875,2250,2625,3000],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset, num_workers=cpu_count, shuffle=False, pin_memory=True,
collate_fn=collate_fn, batch_sampler=train_sampler)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, augmentation=False)
eval_sampler = DistributedBucketSampler(
eval_dataset,
hps.train.batch_size,
[96,375,750,1125,1500,1875,2250,2625,3000],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
eval_loader = DataLoader(eval_dataset, num_workers=cpu_count, shuffle=False, pin_memory=True,
collate_fn=collate_fn, batch_sampler=eval_sampler)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = parallel(net_g, device_ids=[rank])
net_d = parallel(net_d, device_ids=[rank])
logger.info('FineTuning : '+str(hps.fine_flag))
if hps.fine_flag:
logger.info('Load model : '+str(hps.fine_model_g))
logger.info('Load model : '+str(hps.fine_model_d))
_, _, _, epoch_str = utils.load_checkpoint(hps.fine_model_g, net_g, optim_g)
_, _, _, epoch_str = utils.load_checkpoint(hps.fine_model_d, net_d, optim_d)
epoch_str = 1
global_step = 0
else:
try:
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank==0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(train_loader, desc="Epoch {}".format(epoch))):
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
speakers = speakers.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
y_hat, attn, ids_slice, x_mask, z_mask,\
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat = y_hat.float()
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank==0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info(datetime.datetime.now(pytz.timezone('Asia/Tokyo')))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl})
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_latest_99999999.pth"))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_latest_99999999.pth"))
if global_step % hps.train.eval_interval == 0 and global_step != 0:
evaluate(hps, net_g, eval_loader, writer_eval, logger)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_latest_99999999.pth"))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_latest_99999999.pth"))
global_step += 1
def evaluate(hps, generator, eval_loader, writer_eval, logger):
scalar_dict = {}
scalar_dict.update({"loss/g/mel": 0.0, "loss/g/kl": 0.0})
with torch.no_grad():
#evalのデータセットを一周する
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(eval_loader, desc="Epoch {}".format("eval"))):
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
speakers = speakers.cuda(0)
#autocastはfp16のおまじない
with autocast(enabled=hps.train.fp16_run):
#Generator
y_hat, attn, ids_slice, x_mask, z_mask,\
(z, z_p, m_p, logs_p, m_q, logs_q) = generator(x, x_lengths, spec, spec_lengths, speakers)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat = y_hat.float()
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
batch_num = batch_idx
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
with autocast(enabled=hps.train.fp16_run):
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
scalar_dict["loss/g/mel"] = scalar_dict["loss/g/mel"] + loss_mel
scalar_dict["loss/g/kl"] = scalar_dict["loss/g/kl"] + loss_kl
#lossをepoch1周の結果をiter単位の平均値に
scalar_dict["loss/g/mel"] = scalar_dict["loss/g/mel"] / (batch_num+1)
scalar_dict["loss/g/kl"] = scalar_dict["loss/g/kl"] / (batch_num+1)
logger.info("loss/g/mel : {} lloss/g/kl : {}".format(str(scalar_dict["loss/g/mel"]), str(scalar_dict["loss/g/kl"])))
utils.summarize(
writer=writer_eval,
global_step=global_step,
scalars=scalar_dict,
)
if __name__ == "__main__":
main()