mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
b215f3ba84
- Timer update - Diffusion SVC Performance monitor
194 lines
7.4 KiB
Python
194 lines
7.4 KiB
Python
from typing import Any
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.cuda.amp import autocast
|
|
from Exceptions import (
|
|
DeviceCannotSupportHalfPrecisionException,
|
|
DeviceChangingException,
|
|
HalfPrecisionChangingException,
|
|
NotEnoughDataExtimateF0,
|
|
)
|
|
from mods.log_control import VoiceChangaerLogger
|
|
from voice_changer.DiffusionSVC.inferencer.Inferencer import Inferencer
|
|
from voice_changer.DiffusionSVC.pitchExtractor.PitchExtractor import PitchExtractor
|
|
|
|
from voice_changer.RVC.embedder.Embedder import Embedder
|
|
|
|
from voice_changer.common.VolumeExtractor import VolumeExtractor
|
|
from torchaudio.transforms import Resample
|
|
|
|
from voice_changer.utils.Timer import Timer2
|
|
|
|
logger = VoiceChangaerLogger.get_instance().getLogger()
|
|
|
|
|
|
class Pipeline(object):
|
|
embedder: Embedder
|
|
inferencer: Inferencer
|
|
pitchExtractor: PitchExtractor
|
|
|
|
index: Any | None
|
|
big_npy: Any | None
|
|
# feature: Any | None
|
|
|
|
targetSR: int
|
|
device: torch.device
|
|
isHalf: bool
|
|
|
|
def __init__(
|
|
self,
|
|
embedder: Embedder,
|
|
inferencer: Inferencer,
|
|
pitchExtractor: PitchExtractor,
|
|
# index: Any | None,
|
|
targetSR,
|
|
device,
|
|
isHalf,
|
|
resamplerIn: Resample,
|
|
resamplerOut: Resample,
|
|
):
|
|
self.inferencer = inferencer
|
|
inferencer_block_size, inferencer_sampling_rate = inferencer.getConfig()
|
|
self.hop_size = inferencer_block_size * 16000 / inferencer_sampling_rate # 16000はオーディオのサンプルレート。16Kで処理
|
|
self.inferencer_block_size = inferencer_block_size
|
|
self.inferencer_sampling_rate = inferencer_sampling_rate
|
|
|
|
self.volumeExtractor = VolumeExtractor(self.hop_size)
|
|
self.embedder = embedder
|
|
self.pitchExtractor = pitchExtractor
|
|
|
|
self.resamplerIn = resamplerIn
|
|
self.resamplerOut = resamplerOut
|
|
|
|
logger.info("VOLUME EXTRACTOR" + str(self.volumeExtractor))
|
|
logger.info("GENERATE INFERENCER" + str(self.inferencer))
|
|
logger.info("GENERATE EMBEDDER" + str(self.embedder))
|
|
logger.info("GENERATE PITCH EXTRACTOR" + str(self.pitchExtractor))
|
|
|
|
self.targetSR = targetSR
|
|
self.device = device
|
|
self.isHalf = False
|
|
|
|
def getPipelineInfo(self):
|
|
volumeExtractorInfo = self.volumeExtractor.getVolumeExtractorInfo()
|
|
inferencerInfo = self.inferencer.getInferencerInfo() if self.inferencer else {}
|
|
embedderInfo = self.embedder.getEmbedderInfo()
|
|
pitchExtractorInfo = self.pitchExtractor.getPitchExtractorInfo()
|
|
return {"volumeExtractor": volumeExtractorInfo, "inferencer": inferencerInfo, "embedder": embedderInfo, "pitchExtractor": pitchExtractorInfo, "isHalf": self.isHalf}
|
|
|
|
def setPitchExtractor(self, pitchExtractor: PitchExtractor):
|
|
self.pitchExtractor = pitchExtractor
|
|
|
|
@torch.no_grad()
|
|
def extract_volume_and_mask(self, audio: torch.Tensor, threshold: float):
|
|
volume_t = self.volumeExtractor.extract_t(audio)
|
|
mask = self.volumeExtractor.get_mask_from_volume_t(volume_t, self.inferencer_block_size, threshold=threshold)
|
|
volume = volume_t.unsqueeze(-1).unsqueeze(0)
|
|
return volume, mask
|
|
|
|
def exec(
|
|
self,
|
|
sid,
|
|
audio, # torch.tensor [n]
|
|
sr,
|
|
pitchf, # np.array [m]
|
|
feature, # np.array [m, feat]
|
|
f0_up_key,
|
|
k_step,
|
|
infer_speedup,
|
|
silence_front,
|
|
embOutputLayer,
|
|
useFinalProj,
|
|
protect=0.5,
|
|
skip_diffusion=True,
|
|
):
|
|
use_timer = False
|
|
# print("---------- pipe line --------------------")
|
|
with Timer2("pre-process", use_timer) as t:
|
|
audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
|
|
audio16k = self.resamplerIn(audio_t)
|
|
volume, mask = self.extract_volume_and_mask(audio16k, threshold=-60.0)
|
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
|
n_frames = int(audio16k.size(-1) // self.hop_size + 1)
|
|
# print("[Timer::1: ]", t.secs)
|
|
|
|
with Timer2("extract pitch", use_timer) as t:
|
|
# ピッチ検出
|
|
try:
|
|
# pitch = self.pitchExtractor.extract(
|
|
# audio16k.squeeze(),
|
|
# pitchf,
|
|
# f0_up_key,
|
|
# int(self.hop_size), # 処理のwindowサイズ (44100における512)
|
|
# silence_front=silence_front,
|
|
# )
|
|
pitch = self.pitchExtractor.extract(
|
|
audio,
|
|
sr,
|
|
self.inferencer_block_size,
|
|
self.inferencer_sampling_rate,
|
|
pitchf,
|
|
f0_up_key,
|
|
silence_front=silence_front,
|
|
)
|
|
pitch = torch.tensor(pitch[-n_frames:], device=self.device, dtype=torch.float).unsqueeze(0).long()
|
|
except IndexError as e: # NOQA
|
|
raise NotEnoughDataExtimateF0()
|
|
|
|
# tensor型調整
|
|
feats = audio16k.squeeze()
|
|
if feats.dim() == 2: # double channels
|
|
feats = feats.mean(-1)
|
|
feats = feats.view(1, -1)
|
|
# print("[Timer::2: ]", t.secs)
|
|
|
|
with Timer2("extract feature", use_timer) as t:
|
|
# embedding
|
|
with autocast(enabled=self.isHalf):
|
|
try:
|
|
feats = self.embedder.extractFeatures(feats, embOutputLayer, useFinalProj)
|
|
if torch.isnan(feats).all():
|
|
raise DeviceCannotSupportHalfPrecisionException()
|
|
except RuntimeError as e:
|
|
if "HALF" in e.__str__().upper():
|
|
raise HalfPrecisionChangingException()
|
|
elif "same device" in e.__str__():
|
|
raise DeviceChangingException()
|
|
else:
|
|
raise e
|
|
feats = F.interpolate(feats.permute(0, 2, 1), size=int(n_frames), mode="nearest").permute(0, 2, 1)
|
|
# print("[Timer::3: ]", t.secs)
|
|
|
|
with Timer2("infer", use_timer) as t:
|
|
# 推論実行
|
|
try:
|
|
with torch.no_grad():
|
|
with autocast(enabled=self.isHalf):
|
|
audio1 = (
|
|
torch.clip(
|
|
self.inferencer.infer(audio16k, feats, pitch.unsqueeze(-1), volume, mask, sid, k_step, infer_speedup, silence_front=silence_front, skip_diffusion=skip_diffusion).to(dtype=torch.float32),
|
|
-1.0,
|
|
1.0,
|
|
)
|
|
* 32767.5
|
|
).data.to(dtype=torch.int16)
|
|
except RuntimeError as e:
|
|
if "HALF" in e.__str__().upper():
|
|
print("11", e)
|
|
raise HalfPrecisionChangingException()
|
|
else:
|
|
raise e
|
|
# print("[Timer::4: ]", t.secs)
|
|
|
|
with Timer2("post-process", use_timer) as t: # NOQA
|
|
feats_buffer = feats.squeeze(0).detach().cpu()
|
|
if pitch is not None:
|
|
pitch_buffer = pitch.squeeze(0).detach().cpu()
|
|
else:
|
|
pitch_buffer = None
|
|
|
|
del pitch, pitchf, feats, sid
|
|
audio1 = self.resamplerOut(audio1.float())
|
|
# print("[Timer::5: ]", t.secs)
|
|
return audio1, pitch_buffer, feats_buffer
|