voice-changer/server/voice_changer/RVC/RVCr2.py
2024-02-28 23:08:49 +09:00

322 lines
12 KiB
Python

"""
VoiceChangerV2向け
"""
from dataclasses import asdict
import numpy as np
import torch
from data.ModelSlot import RVCModelSlot
from mods.log_control import VoiceChangaerLogger
from voice_changer.RVC.RVCSettings import RVCSettings
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
from voice_changer.utils.VoiceChangerModel import (
AudioInOut,
PitchfInOut,
FeatureInOut,
VoiceChangerModel,
)
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from voice_changer.RVC.pipeline.Pipeline import Pipeline
from Exceptions import (
DeviceCannotSupportHalfPrecisionException,
PipelineCreateException,
PipelineNotInitializedException,
)
import resampy
from typing import cast
logger = VoiceChangaerLogger.get_instance().getLogger()
class RVCr2(VoiceChangerModel):
def __init__(self, params: VoiceChangerParams, slotInfo: RVCModelSlot):
logger.info("[Voice Changer] [RVCr2] Creating instance ")
self.voiceChangerType = "RVC"
self.deviceManager = DeviceManager.get_instance()
EmbedderManager.initialize(params)
PitchExtractorManager.initialize(params)
self.settings = RVCSettings()
self.params = params
# self.pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector, self.settings.gpu)
self.pipeline: Pipeline | None = None
self.audio_buffer: AudioInOut | None = None
self.pitchf_buffer: PitchfInOut | None = None
self.feature_buffer: FeatureInOut | None = None
self.prevVol = 0.0
self.slotInfo = slotInfo
# self.initialize()
def initialize(self):
logger.info("[Voice Changer][RVCr2] Initializing... ")
# pipelineの生成
try:
self.pipeline = createPipeline(self.params, self.slotInfo, self.settings.gpu, self.settings.f0Detector)
except PipelineCreateException as e: # NOQA
logger.error("[Voice Changer] pipeline create failed. check your model is valid.")
return
# その他の設定
self.settings.tran = self.slotInfo.defaultTune
self.settings.indexRatio = self.slotInfo.defaultIndexRatio
self.settings.protect = self.slotInfo.defaultProtect
logger.info("[Voice Changer] [RVC] Initializing... done")
def setSamplingRate(self, inputSampleRate, outputSampleRate):
self.inputSampleRate = inputSampleRate
self.outputSampleRate = outputSampleRate
# self.initialize()
def update_settings(self, key: str, val: int | float | str):
logger.info(f"[Voice Changer][RVC]: update_settings {key}:{val}")
if key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu":
self.deviceManager.setForceTensor(False)
self.initialize()
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
if key == "f0Detector" and self.pipeline is not None:
pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector, self.settings.gpu)
self.pipeline.setPitchExtractor(pitchExtractor)
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
if self.pipeline is not None:
pipelineInfo = self.pipeline.getPipelineInfo()
data["pipelineInfo"] = pipelineInfo
else:
data["pipelineInfo"] = "None"
return data
def get_processing_sampling_rate(self):
return self.slotInfo.samplingRate
def generate_input(
self,
newData: AudioInOut,
crossfadeSize: int,
solaSearchFrame: int,
extra_frame: int,
):
# 16k で入ってくる。
inputSize = newData.shape[0]
newData = newData.astype(np.float32) / 32768.0
newFeatureLength = inputSize // 160 # hopsize:=160
if self.audio_buffer is not None:
# 過去のデータに連結
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
if self.slotInfo.f0:
self.pitchf_buffer = np.concatenate([self.pitchf_buffer, np.zeros(newFeatureLength)], 0)
self.feature_buffer = np.concatenate(
[
self.feature_buffer,
np.zeros([newFeatureLength, self.slotInfo.embChannels]),
],
0,
)
else:
self.audio_buffer = newData
if self.slotInfo.f0:
self.pitchf_buffer = np.zeros(newFeatureLength)
self.feature_buffer = np.zeros([newFeatureLength, self.slotInfo.embChannels])
convertSize = inputSize + crossfadeSize + solaSearchFrame + extra_frame
if convertSize % 160 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (160 - (convertSize % 160))
outSize = int(((convertSize - extra_frame) / 16000) * self.slotInfo.samplingRate)
# バッファがたまっていない場合はzeroで補う
if self.audio_buffer.shape[0] < convertSize:
self.audio_buffer = np.concatenate([np.zeros([convertSize]), self.audio_buffer])
if self.slotInfo.f0:
self.pitchf_buffer = np.concatenate([np.zeros([convertSize // 160]), self.pitchf_buffer])
self.feature_buffer = np.concatenate(
[
np.zeros([convertSize // 160, self.slotInfo.embChannels]),
self.feature_buffer,
]
)
# 不要部分をトリミング
convertOffset = -1 * convertSize
featureOffset = convertOffset // 160
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
if self.slotInfo.f0:
self.pitchf_buffer = self.pitchf_buffer[featureOffset:]
self.feature_buffer = self.feature_buffer[featureOffset:]
# 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
cropOffset = -1 * (inputSize + crossfadeSize)
cropEnd = -1 * (crossfadeSize)
crop = self.audio_buffer[cropOffset:cropEnd]
vol = np.sqrt(np.square(crop).mean())
vol = max(vol, self.prevVol * 0.0)
self.prevVol = vol
return (
self.audio_buffer,
self.pitchf_buffer,
self.feature_buffer,
convertSize,
vol,
outSize,
)
def inference(self, receivedData: AudioInOut, crossfade_frame: int, sola_search_frame: int):
if self.pipeline is None:
logger.info("[Voice Changer] Pipeline is not initialized.")
raise PipelineNotInitializedException()
# 処理は16Kで実施(Pitch, embed, (infer))
receivedData = cast(
AudioInOut,
resampy.resample(
receivedData,
self.inputSampleRate,
16000,
filter="kaiser_fast",
),
)
crossfade_frame = int((crossfade_frame / self.inputSampleRate) * 16000)
sola_search_frame = int((sola_search_frame / self.inputSampleRate) * 16000)
extra_frame = int((self.settings.extraConvertSize / self.inputSampleRate) * 16000)
# 入力データ生成
data = self.generate_input(receivedData, crossfade_frame, sola_search_frame, extra_frame)
audio = data[0]
pitchf = data[1]
feature = data[2]
convertSize = data[3]
vol = data[4]
outSize = data[5]
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16) * np.sqrt(vol)
device = self.pipeline.device
audio = torch.from_numpy(audio).to(device=device, dtype=torch.float32)
repeat = 1 if self.settings.rvcQuality else 0
sid = self.settings.dstId
f0_up_key = self.settings.tran
index_rate = self.settings.indexRatio
protect = self.settings.protect
if_f0 = 1 if self.slotInfo.f0 else 0
embOutputLayer = self.slotInfo.embOutputLayer
useFinalProj = self.slotInfo.useFinalProj
try:
audio_out, self.pitchf_buffer, self.feature_buffer = self.pipeline.exec(
sid,
audio,
pitchf,
feature,
f0_up_key,
index_rate,
if_f0,
# 0,
self.settings.extraConvertSize / self.inputSampleRate if self.settings.silenceFront else 0.0, # extaraDataSizeの秒数。入力のサンプリングレートで算出
embOutputLayer,
useFinalProj,
repeat,
protect,
outSize,
)
# result = audio_out.detach().cpu().numpy() * np.sqrt(vol)
result = audio_out[-outSize:].detach().cpu().numpy() * np.sqrt(vol)
result = cast(
AudioInOut,
resampy.resample(
result,
self.slotInfo.samplingRate,
self.outputSampleRate,
filter="kaiser_fast",
),
)
return result
except DeviceCannotSupportHalfPrecisionException as e: # NOQA
logger.warn("[Device Manager] Device cannot support half precision. Fallback to float....")
self.deviceManager.setForceTensor(True)
self.initialize()
# raise e
return
def __del__(self):
del self.pipeline
# print("---------- REMOVING ---------------")
# remove_path = os.path.join("RVC")
# sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
# for key in list(sys.modules):
# val = sys.modules.get(key)
# try:
# file_path = val.__file__
# if file_path.find("RVC" + os.path.sep) >= 0:
# # print("remove", key, file_path)
# sys.modules.pop(key)
# except Exception: # type:ignore
# # print(e)
# pass
def export2onnx(self):
modelSlot = self.slotInfo
if modelSlot.isONNX:
logger.warn("[Voice Changer] export2onnx, No pyTorch filepath.")
return {"status": "ng", "path": ""}
if self.pipeline is not None:
del self.pipeline
self.pipeline = None
torch.cuda.empty_cache()
self.initialize()
output_file_simple = export2onnx(self.settings.gpu, modelSlot)
return {
"status": "ok",
"path": f"/tmp/{output_file_simple}",
"filename": output_file_simple,
}
def get_model_current(self):
return [
{
"key": "defaultTune",
"val": self.settings.tran,
},
{
"key": "defaultIndexRatio",
"val": self.settings.indexRatio,
},
{
"key": "defaultProtect",
"val": self.settings.protect,
},
]