mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-24 05:55:01 +03:00
346 lines
13 KiB
Python
346 lines
13 KiB
Python
import sys
|
||
import os
|
||
from dataclasses import asdict
|
||
import numpy as np
|
||
import torch
|
||
import torchaudio
|
||
from data.ModelSlot import RVCModelSlot
|
||
|
||
|
||
# avoiding parse arg error in RVC
|
||
sys.argv = ["MMVCServerSIO.py"]
|
||
|
||
if sys.platform.startswith("darwin"):
|
||
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
|
||
if len(baseDir) != 1:
|
||
print("baseDir should be only one ", baseDir)
|
||
sys.exit()
|
||
modulePath = os.path.join(baseDir[0], "RVC")
|
||
sys.path.append(modulePath)
|
||
else:
|
||
sys.path.append("RVC")
|
||
|
||
from voice_changer.RVC.ModelSlotGenerator import (
|
||
_setInfoByONNX,
|
||
_setInfoByPytorch,
|
||
)
|
||
from voice_changer.RVC.RVCSettings import RVCSettings
|
||
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
|
||
from voice_changer.utils.LoadModelParams import LoadModelParams2
|
||
from voice_changer.utils.VoiceChangerModel import AudioInOut
|
||
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
|
||
from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
|
||
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
|
||
from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline
|
||
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
|
||
from voice_changer.RVC.pipeline.Pipeline import Pipeline
|
||
|
||
from Exceptions import DeviceCannotSupportHalfPrecisionException, NoModeLoadedException
|
||
|
||
|
||
class RVC:
|
||
initialLoad: bool = True
|
||
settings: RVCSettings = RVCSettings()
|
||
|
||
pipeline: Pipeline | None = None
|
||
|
||
deviceManager = DeviceManager.get_instance()
|
||
|
||
audio_buffer: AudioInOut | None = None
|
||
prevVol: float = 0
|
||
params: VoiceChangerParams
|
||
currentSlot: int = 0
|
||
needSwitch: bool = False
|
||
|
||
def __init__(self, params: VoiceChangerParams, slotInfo: RVCModelSlot):
|
||
print("[Voice Changer][RVC] Creating instance ")
|
||
EmbedderManager.initialize(params)
|
||
|
||
self.params = params
|
||
self.pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector)
|
||
|
||
self.prevVol = 0.0
|
||
self.slotInfo = slotInfo
|
||
self.initialize()
|
||
|
||
def initialize(self):
|
||
print("[Voice Changer][RVC] Initializing... ")
|
||
|
||
# pipelineの生成
|
||
self.pipeline = createPipeline(self.slotInfo, self.settings.gpu, self.settings.f0Detector)
|
||
|
||
# その他の設定
|
||
self.trans = self.slotInfo.defaultTune
|
||
self.index_ratio = self.slotInfo.defaultIndexRatio
|
||
self.protect = self.slotInfo.defaultProtect
|
||
self.samplingRate = self.slotInfo.samplingRate
|
||
print("[Voice Changer][RVC] Initializing... done")
|
||
|
||
@classmethod
|
||
def loadModel2(cls, props: LoadModelParams2):
|
||
slotInfo: RVCModelSlot = RVCModelSlot()
|
||
for file in props.files:
|
||
if file.kind == "rvcModel":
|
||
slotInfo.modelFile = file.name
|
||
elif file.kind == "rvcIndex":
|
||
slotInfo.indexFile = file.name
|
||
slotInfo.defaultTune = 0
|
||
slotInfo.defaultIndexRatio = 0
|
||
slotInfo.defaultProtect = 0.5
|
||
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
|
||
slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0]
|
||
# slotInfo.iconFile = "/assets/icons/noimage.png"
|
||
|
||
if slotInfo.isONNX:
|
||
_setInfoByONNX(slotInfo)
|
||
else:
|
||
_setInfoByPytorch(slotInfo)
|
||
return slotInfo
|
||
|
||
def update_settings(self, key: str, val: int | float | str):
|
||
print("[Voice Changer][RVC]: update_settings", key, val)
|
||
if key in self.settings.intData:
|
||
setattr(self.settings, key, int(val))
|
||
if key == "gpu":
|
||
self.deviceManager.setForceTensor(False)
|
||
self.initialize()
|
||
elif key in self.settings.floatData:
|
||
setattr(self.settings, key, float(val))
|
||
elif key in self.settings.strData:
|
||
setattr(self.settings, key, str(val))
|
||
if key == "f0Detector" and self.pipeline is not None:
|
||
pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector)
|
||
self.pipeline.setPitchExtractor(pitchExtractor)
|
||
else:
|
||
return False
|
||
return True
|
||
|
||
def get_info(self):
|
||
data = asdict(self.settings)
|
||
if self.pipeline is not None:
|
||
pipelineInfo = self.pipeline.getPipelineInfo()
|
||
data["pipelineInfo"] = pipelineInfo
|
||
return data
|
||
|
||
def get_processing_sampling_rate(self):
|
||
return self.settings.modelSamplingRate
|
||
|
||
def generate_input(
|
||
self,
|
||
newData: AudioInOut,
|
||
inputSize: int,
|
||
crossfadeSize: int,
|
||
solaSearchFrame: int = 0,
|
||
):
|
||
newData = newData.astype(np.float32) / 32768.0 # RVCのモデルのサンプリングレートで入ってきている。(extraDataLength, Crossfade等も同じSRで処理)(★1)
|
||
|
||
if self.audio_buffer is not None:
|
||
# 過去のデータに連結
|
||
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
|
||
else:
|
||
self.audio_buffer = newData
|
||
|
||
convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
|
||
|
||
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
||
convertSize = convertSize + (128 - (convertSize % 128))
|
||
|
||
# バッファがたまっていない場合はzeroで補う
|
||
if self.audio_buffer.shape[0] < convertSize:
|
||
self.audio_buffer = np.concatenate([np.zeros([convertSize]), self.audio_buffer])
|
||
|
||
convertOffset = -1 * convertSize
|
||
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
|
||
|
||
if self.pipeline is not None:
|
||
device = self.pipeline.device
|
||
else:
|
||
device = torch.device("cpu")
|
||
|
||
audio_buffer = torch.from_numpy(self.audio_buffer).to(device=device, dtype=torch.float32)
|
||
|
||
# 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
|
||
cropOffset = -1 * (inputSize + crossfadeSize)
|
||
cropEnd = -1 * (crossfadeSize)
|
||
crop = audio_buffer[cropOffset:cropEnd]
|
||
vol = torch.sqrt(torch.square(crop).mean()).detach().cpu().numpy()
|
||
vol = max(vol, self.prevVol * 0.0)
|
||
self.prevVol = vol
|
||
|
||
return (audio_buffer, convertSize, vol)
|
||
|
||
def inference(self, data):
|
||
# if self.settings.modelSlotIndex < 0:
|
||
# print(
|
||
# "[Voice Changer] wait for loading model...",
|
||
# self.settings.modelSlotIndex,
|
||
# self.currentSlot,
|
||
# )
|
||
# raise NoModeLoadedException("model_common")
|
||
|
||
audio = data[0]
|
||
convertSize = data[1]
|
||
vol = data[2]
|
||
|
||
if vol < self.settings.silentThreshold:
|
||
return np.zeros(convertSize).astype(np.int16)
|
||
|
||
audio = torchaudio.functional.resample(audio, self.settings.modelSamplingRate, 16000, rolloff=0.99)
|
||
repeat = 1 if self.settings.rvcQuality else 0
|
||
sid = 0
|
||
f0_up_key = self.settings.tran
|
||
index_rate = self.settings.indexRatio
|
||
protect = self.settings.protect
|
||
|
||
# if_f0 = 1 if self.settings.modelSlots[self.currentSlot].f0 else 0
|
||
# embOutputLayer = self.settings.modelSlots[self.currentSlot].embOutputLayer
|
||
# useFinalProj = self.settings.modelSlots[self.currentSlot].useFinalProj
|
||
|
||
if_f0 = 1 if self.slotInfo.f0 else 0
|
||
embOutputLayer = self.slotInfo.embOutputLayer
|
||
useFinalProj = self.slotInfo.useFinalProj
|
||
|
||
try:
|
||
audio_out = self.pipeline.exec(
|
||
sid,
|
||
audio,
|
||
f0_up_key,
|
||
index_rate,
|
||
if_f0,
|
||
self.settings.extraConvertSize / self.settings.modelSamplingRate, # extaraDataSizeの秒数。RVCのモデルのサンプリングレートで処理(★1)。
|
||
embOutputLayer,
|
||
useFinalProj,
|
||
repeat,
|
||
protect,
|
||
)
|
||
result = audio_out.detach().cpu().numpy() * np.sqrt(vol)
|
||
|
||
return result
|
||
except DeviceCannotSupportHalfPrecisionException as e:
|
||
print("[Device Manager] Device cannot support half precision. Fallback to float....")
|
||
self.deviceManager.setForceTensor(True)
|
||
self.prepareModel(self.settings.modelSlotIndex)
|
||
raise e
|
||
|
||
return
|
||
|
||
def __del__(self):
|
||
del self.pipeline
|
||
|
||
print("---------- REMOVING ---------------")
|
||
|
||
remove_path = os.path.join("RVC")
|
||
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
|
||
|
||
for key in list(sys.modules):
|
||
val = sys.modules.get(key)
|
||
try:
|
||
file_path = val.__file__
|
||
if file_path.find("RVC" + os.path.sep) >= 0:
|
||
# print("remove", key, file_path)
|
||
sys.modules.pop(key)
|
||
except Exception: # type:ignore
|
||
# print(e)
|
||
pass
|
||
|
||
def export2onnx(self):
|
||
allModelSlots = self.modelSlotManager.getAllSlotInfo()
|
||
modelSlot = allModelSlots[self.settings.modelSlotIndex]
|
||
|
||
if modelSlot.isONNX:
|
||
print("[Voice Changer] export2onnx, No pyTorch filepath.")
|
||
return {"status": "ng", "path": ""}
|
||
|
||
output_file_simple = export2onnx(self.settings.gpu, modelSlot)
|
||
return {
|
||
"status": "ok",
|
||
"path": f"/tmp/{output_file_simple}",
|
||
"filename": output_file_simple,
|
||
}
|
||
|
||
def merge_models(self, request: str):
|
||
print("[Voice Changer] MergeRequest:", request)
|
||
# req: MergeModelRequest = MergeModelRequest.from_json(request)
|
||
# merged = merge_model(req)
|
||
# targetSlot = 0
|
||
# if req.slot < 0:
|
||
# # 最後尾のスロット番号を格納先とする。
|
||
# allModelSlots = self.modelSlotManager.getAllSlotInfo()
|
||
# targetSlot = len(allModelSlots) - 1
|
||
# else:
|
||
# targetSlot = req.slot
|
||
|
||
# # いったんは、アップロードフォルダに格納する。(歴史的経緯)
|
||
# # 後続のloadmodelを呼び出すことで永続化モデルフォルダに移動させられる。
|
||
# storeDir = os.path.join(UPLOAD_DIR, f"{targetSlot}")
|
||
# print("[Voice Changer] store merged model to:", storeDir)
|
||
# os.makedirs(storeDir, exist_ok=True)
|
||
# storeFile = os.path.join(storeDir, "merged.pth")
|
||
# torch.save(merged, storeFile)
|
||
|
||
# # loadmodelを呼び出して永続化モデルフォルダに移動させる。
|
||
# params = {
|
||
# "defaultTune": req.defaultTune,
|
||
# "defaultIndexRatio": req.defaultIndexRatio,
|
||
# "defaultProtect": req.defaultProtect,
|
||
# "sampleId": "",
|
||
# "files": {"rvcModel": storeFile},
|
||
# }
|
||
# props: LoadModelParams = LoadModelParams(slot=targetSlot, isHalf=True, params=params)
|
||
# self.loadModel(props)
|
||
# self.prepareModel(targetSlot)
|
||
# self.settings.modelSlotIndex = targetSlot
|
||
# self.currentSlot = self.settings.modelSlotIndex
|
||
|
||
# def update_model_default(self):
|
||
# # {"slot":9,"key":"name","val":"dogsdododg"}
|
||
# self.modelSlotManager.update_model_info(
|
||
# json.dumps(
|
||
# {
|
||
# "slot": self.currentSlot,
|
||
# "key": "defaultTune",
|
||
# "val": self.settings.tran,
|
||
# }
|
||
# )
|
||
# )
|
||
# self.modelSlotManager.update_model_info(
|
||
# json.dumps(
|
||
# {
|
||
# "slot": self.currentSlot,
|
||
# "key": "defaultIndexRatio",
|
||
# "val": self.settings.indexRatio,
|
||
# }
|
||
# )
|
||
# )
|
||
# self.modelSlotManager.update_model_info(
|
||
# json.dumps(
|
||
# {
|
||
# "slot": self.currentSlot,
|
||
# "key": "defaultProtect",
|
||
# "val": self.settings.protect,
|
||
# }
|
||
# )
|
||
# )
|
||
|
||
def get_model_current(self):
|
||
return [
|
||
{
|
||
"key": "defaultTune",
|
||
"val": self.settings.tran,
|
||
},
|
||
{
|
||
"key": "defaultIndexRatio",
|
||
"val": self.settings.indexRatio,
|
||
},
|
||
{
|
||
"key": "defaultProtect",
|
||
"val": self.settings.protect,
|
||
},
|
||
]
|
||
|
||
# def update_model_info(self, newData: str):
|
||
# self.modelSlotManager.update_model_info(newData)
|
||
|
||
# def upload_model_assets(self, params: str):
|
||
# self.modelSlotManager.store_model_assets(params)
|