voice-changer/server/voice_changer/RVC/RVC.py
2023-06-21 07:23:13 +09:00

346 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
import os
from dataclasses import asdict
import numpy as np
import torch
import torchaudio
from data.ModelSlot import RVCModelSlot
# avoiding parse arg error in RVC
sys.argv = ["MMVCServerSIO.py"]
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "RVC")
sys.path.append(modulePath)
else:
sys.path.append("RVC")
from voice_changer.RVC.ModelSlotGenerator import (
_setInfoByONNX,
_setInfoByPytorch,
)
from voice_changer.RVC.RVCSettings import RVCSettings
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
from voice_changer.utils.LoadModelParams import LoadModelParams2
from voice_changer.utils.VoiceChangerModel import AudioInOut
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
from voice_changer.RVC.onnxExporter.export2onnx import export2onnx
from voice_changer.RVC.pitchExtractor.PitchExtractorManager import PitchExtractorManager
from voice_changer.RVC.pipeline.PipelineGenerator import createPipeline
from voice_changer.RVC.deviceManager.DeviceManager import DeviceManager
from voice_changer.RVC.pipeline.Pipeline import Pipeline
from Exceptions import DeviceCannotSupportHalfPrecisionException, NoModeLoadedException
class RVC:
initialLoad: bool = True
settings: RVCSettings = RVCSettings()
pipeline: Pipeline | None = None
deviceManager = DeviceManager.get_instance()
audio_buffer: AudioInOut | None = None
prevVol: float = 0
params: VoiceChangerParams
currentSlot: int = 0
needSwitch: bool = False
def __init__(self, params: VoiceChangerParams, slotInfo: RVCModelSlot):
print("[Voice Changer][RVC] Creating instance ")
EmbedderManager.initialize(params)
self.params = params
self.pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector)
self.prevVol = 0.0
self.slotInfo = slotInfo
self.initialize()
def initialize(self):
print("[Voice Changer][RVC] Initializing... ")
# pipelineの生成
self.pipeline = createPipeline(self.slotInfo, self.settings.gpu, self.settings.f0Detector)
# その他の設定
self.trans = self.slotInfo.defaultTune
self.index_ratio = self.slotInfo.defaultIndexRatio
self.protect = self.slotInfo.defaultProtect
self.samplingRate = self.slotInfo.samplingRate
print("[Voice Changer][RVC] Initializing... done")
@classmethod
def loadModel2(cls, props: LoadModelParams2):
slotInfo: RVCModelSlot = RVCModelSlot()
for file in props.files:
if file.kind == "rvcModel":
slotInfo.modelFile = file.name
elif file.kind == "rvcIndex":
slotInfo.indexFile = file.name
slotInfo.defaultTune = 0
slotInfo.defaultIndexRatio = 0
slotInfo.defaultProtect = 0.5
slotInfo.isONNX = slotInfo.modelFile.endswith(".onnx")
slotInfo.name = os.path.splitext(os.path.basename(slotInfo.modelFile))[0]
# slotInfo.iconFile = "/assets/icons/noimage.png"
if slotInfo.isONNX:
_setInfoByONNX(slotInfo)
else:
_setInfoByPytorch(slotInfo)
return slotInfo
def update_settings(self, key: str, val: int | float | str):
print("[Voice Changer][RVC]: update_settings", key, val)
if key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu":
self.deviceManager.setForceTensor(False)
self.initialize()
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
if key == "f0Detector" and self.pipeline is not None:
pitchExtractor = PitchExtractorManager.getPitchExtractor(self.settings.f0Detector)
self.pipeline.setPitchExtractor(pitchExtractor)
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
if self.pipeline is not None:
pipelineInfo = self.pipeline.getPipelineInfo()
data["pipelineInfo"] = pipelineInfo
return data
def get_processing_sampling_rate(self):
return self.settings.modelSamplingRate
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = newData.astype(np.float32) / 32768.0 # RVCのモデルのサンプリングレートで入ってきている。extraDataLength, Crossfade等も同じSRで処理(★1)
if self.audio_buffer is not None:
# 過去のデータに連結
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0)
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (128 - (convertSize % 128))
# バッファがたまっていない場合はzeroで補う
if self.audio_buffer.shape[0] < convertSize:
self.audio_buffer = np.concatenate([np.zeros([convertSize]), self.audio_buffer])
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
if self.pipeline is not None:
device = self.pipeline.device
else:
device = torch.device("cpu")
audio_buffer = torch.from_numpy(self.audio_buffer).to(device=device, dtype=torch.float32)
# 出力部分だけ切り出して音量を確認。(TODO:段階的消音にする)
cropOffset = -1 * (inputSize + crossfadeSize)
cropEnd = -1 * (crossfadeSize)
crop = audio_buffer[cropOffset:cropEnd]
vol = torch.sqrt(torch.square(crop).mean()).detach().cpu().numpy()
vol = max(vol, self.prevVol * 0.0)
self.prevVol = vol
return (audio_buffer, convertSize, vol)
def inference(self, data):
# if self.settings.modelSlotIndex < 0:
# print(
# "[Voice Changer] wait for loading model...",
# self.settings.modelSlotIndex,
# self.currentSlot,
# )
# raise NoModeLoadedException("model_common")
audio = data[0]
convertSize = data[1]
vol = data[2]
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
audio = torchaudio.functional.resample(audio, self.settings.modelSamplingRate, 16000, rolloff=0.99)
repeat = 1 if self.settings.rvcQuality else 0
sid = 0
f0_up_key = self.settings.tran
index_rate = self.settings.indexRatio
protect = self.settings.protect
# if_f0 = 1 if self.settings.modelSlots[self.currentSlot].f0 else 0
# embOutputLayer = self.settings.modelSlots[self.currentSlot].embOutputLayer
# useFinalProj = self.settings.modelSlots[self.currentSlot].useFinalProj
if_f0 = 1 if self.slotInfo.f0 else 0
embOutputLayer = self.slotInfo.embOutputLayer
useFinalProj = self.slotInfo.useFinalProj
try:
audio_out = self.pipeline.exec(
sid,
audio,
f0_up_key,
index_rate,
if_f0,
self.settings.extraConvertSize / self.settings.modelSamplingRate, # extaraDataSizeの秒数。RVCのモデルのサンプリングレートで処理(★1)。
embOutputLayer,
useFinalProj,
repeat,
protect,
)
result = audio_out.detach().cpu().numpy() * np.sqrt(vol)
return result
except DeviceCannotSupportHalfPrecisionException as e:
print("[Device Manager] Device cannot support half precision. Fallback to float....")
self.deviceManager.setForceTensor(True)
self.prepareModel(self.settings.modelSlotIndex)
raise e
return
def __del__(self):
del self.pipeline
print("---------- REMOVING ---------------")
remove_path = os.path.join("RVC")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("RVC" + os.path.sep) >= 0:
# print("remove", key, file_path)
sys.modules.pop(key)
except Exception: # type:ignore
# print(e)
pass
def export2onnx(self):
allModelSlots = self.modelSlotManager.getAllSlotInfo()
modelSlot = allModelSlots[self.settings.modelSlotIndex]
if modelSlot.isONNX:
print("[Voice Changer] export2onnx, No pyTorch filepath.")
return {"status": "ng", "path": ""}
output_file_simple = export2onnx(self.settings.gpu, modelSlot)
return {
"status": "ok",
"path": f"/tmp/{output_file_simple}",
"filename": output_file_simple,
}
def merge_models(self, request: str):
print("[Voice Changer] MergeRequest:", request)
# req: MergeModelRequest = MergeModelRequest.from_json(request)
# merged = merge_model(req)
# targetSlot = 0
# if req.slot < 0:
# # 最後尾のスロット番号を格納先とする。
# allModelSlots = self.modelSlotManager.getAllSlotInfo()
# targetSlot = len(allModelSlots) - 1
# else:
# targetSlot = req.slot
# # いったんは、アップロードフォルダに格納する。(歴史的経緯)
# # 後続のloadmodelを呼び出すことで永続化モデルフォルダに移動させられる。
# storeDir = os.path.join(UPLOAD_DIR, f"{targetSlot}")
# print("[Voice Changer] store merged model to:", storeDir)
# os.makedirs(storeDir, exist_ok=True)
# storeFile = os.path.join(storeDir, "merged.pth")
# torch.save(merged, storeFile)
# # loadmodelを呼び出して永続化モデルフォルダに移動させる。
# params = {
# "defaultTune": req.defaultTune,
# "defaultIndexRatio": req.defaultIndexRatio,
# "defaultProtect": req.defaultProtect,
# "sampleId": "",
# "files": {"rvcModel": storeFile},
# }
# props: LoadModelParams = LoadModelParams(slot=targetSlot, isHalf=True, params=params)
# self.loadModel(props)
# self.prepareModel(targetSlot)
# self.settings.modelSlotIndex = targetSlot
# self.currentSlot = self.settings.modelSlotIndex
# def update_model_default(self):
# # {"slot":9,"key":"name","val":"dogsdododg"}
# self.modelSlotManager.update_model_info(
# json.dumps(
# {
# "slot": self.currentSlot,
# "key": "defaultTune",
# "val": self.settings.tran,
# }
# )
# )
# self.modelSlotManager.update_model_info(
# json.dumps(
# {
# "slot": self.currentSlot,
# "key": "defaultIndexRatio",
# "val": self.settings.indexRatio,
# }
# )
# )
# self.modelSlotManager.update_model_info(
# json.dumps(
# {
# "slot": self.currentSlot,
# "key": "defaultProtect",
# "val": self.settings.protect,
# }
# )
# )
def get_model_current(self):
return [
{
"key": "defaultTune",
"val": self.settings.tran,
},
{
"key": "defaultIndexRatio",
"val": self.settings.indexRatio,
},
{
"key": "defaultProtect",
"val": self.settings.protect,
},
]
# def update_model_info(self, newData: str):
# self.modelSlotManager.update_model_info(newData)
# def upload_model_assets(self, params: str):
# self.modelSlotManager.store_model_assets(params)