mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-02-03 08:43:57 +03:00
47 lines
1.5 KiB
Python
47 lines
1.5 KiB
Python
import torch
|
|
import numpy as np
|
|
from const import EnumInferenceTypes
|
|
|
|
from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInferencer
|
|
|
|
|
|
class EasyVCInferencerONNX(OnnxRVCInferencer):
|
|
def loadModel(self, file: str, gpu: int, inferencerTypeVersion: str | None = None):
|
|
super().loadModel(file, gpu, inferencerTypeVersion)
|
|
self.setProps(EnumInferenceTypes.easyVC, file, self.isHalf, gpu)
|
|
return self
|
|
|
|
def infer(
|
|
self,
|
|
feats: torch.Tensor,
|
|
pitch_length: torch.Tensor,
|
|
pitch: torch.Tensor | None,
|
|
pitchf: torch.Tensor | None,
|
|
sid: torch.Tensor,
|
|
convert_length: int | None,
|
|
) -> torch.Tensor:
|
|
if self.isHalf:
|
|
audio1 = self.model.run(
|
|
["audio"],
|
|
{
|
|
"feats": feats.cpu().numpy().astype(np.float16),
|
|
"p_len": pitch_length.cpu().numpy().astype(np.int64),
|
|
},
|
|
)
|
|
else:
|
|
audio1 = self.model.run(
|
|
["audio"],
|
|
{
|
|
"feats": feats.cpu().numpy().astype(np.float32),
|
|
"p_len": pitch_length.cpu().numpy().astype(np.int64),
|
|
},
|
|
)
|
|
res = audio1[0][0][0]
|
|
|
|
# if self.inferencerTypeVersion == "v2.1" or self.inferencerTypeVersion == "v1.1":
|
|
# res = audio1[0]
|
|
# else:
|
|
# res = np.array(audio1)[0][0, 0]
|
|
# res = np.clip(res, -1.0, 1.0)
|
|
return torch.tensor(res)
|