voice-changer/server/voice_changer/DDSP_SVC/DDSP_SVC.py
2023-04-28 17:18:33 +09:00

365 lines
12 KiB
Python

import sys
import os
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.VoiceChangerModel import AudioInOut
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "DDSP-SVC")
sys.path.append(modulePath)
else:
sys.path.append("DDSP-SVC")
from dataclasses import dataclass, asdict, field
import numpy as np
import torch
import ddsp.vocoder as vo # type:ignore
from ddsp.core import upsample # type:ignore
from enhancer import Enhancer # type:ignore
from Exceptions import NoModeLoadedException
providers = [
"OpenVINOExecutionProvider",
"CUDAExecutionProvider",
"DmlExecutionProvider",
"CPUExecutionProvider",
]
@dataclass
class DDSP_SVCSettings:
gpu: int = 0
dstId: int = 0
f0Detector: str = "dio" # dio or harvest # parselmouth
tran: int = 20
predictF0: int = 0 # 0:False, 1:True
silentThreshold: float = 0.00001
extraConvertSize: int = 1024 * 32
enableEnhancer: int = 0
enhancerTune: int = 0
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
speakers: dict[str, int] = field(default_factory=lambda: {})
# ↓mutableな物だけ列挙
intData = [
"gpu",
"dstId",
"tran",
"predictF0",
"extraConvertSize",
"enableEnhancer",
"enhancerTune",
]
floatData = ["silentThreshold", "clusterInferRatio"]
strData = ["framework", "f0Detector"]
class DDSP_SVC:
audio_buffer: AudioInOut | None = None
def __init__(self, params: VoiceChangerParams):
self.settings = DDSP_SVCSettings()
self.net_g = None
self.onnx_session = None
self.gpu_num = torch.cuda.device_count()
self.prevVol = 0
self.params = params
print("DDSP-SVC initialization:", params)
def useDevice(self):
if self.settings.gpu >= 0 and torch.cuda.is_available():
return torch.device("cuda", index=self.settings.gpu)
else:
return torch.device("cpu")
def loadModel(self, props: LoadModelParams):
self.settings.pyTorchModelFile = props.files.pyTorchModelFilename
# model
model, args = vo.load_model(
self.settings.pyTorchModelFile, device=self.useDevice()
)
self.model = model
self.args = args
self.sampling_rate = args.data.sampling_rate
self.hop_size = int(
self.args.data.block_size
* self.sampling_rate
/ self.args.data.sampling_rate
)
# hubert
self.vec_path = self.params.hubert_soft
self.encoder = vo.Units_Encoder(
self.args.data.encoder,
self.vec_path,
self.args.data.encoder_sample_rate,
self.args.data.encoder_hop_size,
device=self.useDevice(),
)
# ort_options = onnxruntime.SessionOptions()
# ort_options.intra_op_num_threads = 8
# self.onnx_session = onnxruntime.InferenceSession(
# "model_DDSP-SVC/hubert4.0.onnx",
# providers=providers
# )
# inputs = self.onnx_session.get_inputs()
# outputs = self.onnx_session.get_outputs()
# for input in inputs:
# print("input::::", input)
# for output in outputs:
# print("output::::", output)
# f0dec
self.f0_detector = vo.F0_Extractor(
# "crepe",
self.settings.f0Detector,
self.sampling_rate,
self.hop_size,
float(50),
float(1100),
)
self.volume_extractor = vo.Volume_Extractor(self.hop_size)
self.enhancer_path = self.params.nsf_hifigan
self.enhancer = Enhancer(
self.args.enhancer.type, self.enhancer_path, device=self.useDevice()
)
return self.get_info()
def update_settings(self, key: str, val: int | float | str):
if key == "onnxExecutionProvider" and self.onnx_session is not None:
if val == "CUDAExecutionProvider":
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
provider_options = [{"device_id": self.settings.gpu}]
self.onnx_session.set_providers(
providers=[val], provider_options=provider_options
)
else:
self.onnx_session.set_providers(providers=[val])
elif key in self.settings.intData:
val = int(val)
setattr(self.settings, key, val)
if (
key == "gpu"
and val >= 0
and val < self.gpu_num
and self.onnx_session is not None
):
providers = self.onnx_session.get_providers()
print("Providers:", providers)
if "CUDAExecutionProvider" in providers:
provider_options = [{"device_id": self.settings.gpu}]
self.onnx_session.set_providers(
providers=["CUDAExecutionProvider"],
provider_options=provider_options,
)
if key == "gpu" and len(self.settings.pyTorchModelFile) > 0:
model, _args = vo.load_model(
self.settings.pyTorchModelFile, device=self.useDevice()
)
self.model = model
self.enhancer = Enhancer(
self.args.enhancer.type, self.enhancer_path, device=self.useDevice()
)
self.encoder = vo.Units_Encoder(
self.args.data.encoder,
self.vec_path,
self.args.data.encoder_sample_rate,
self.args.data.encoder_hop_size,
device=self.useDevice(),
)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
if key == "f0Detector":
print("f0Detector update", val)
# if val == "dio":
# val = "parselmouth"
if hasattr(self, "sampling_rate") is False:
self.sampling_rate = 44100
self.hop_size = 512
self.f0_detector = vo.F0_Extractor(
val, self.sampling_rate, self.hop_size, float(50), float(1100)
)
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = (
self.onnx_session.get_providers() if self.onnx_session is not None else []
)
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] is not None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
return self.sampling_rate
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = newData.astype(np.float32) / 32768.0
if self.audio_buffer is not None:
self.audio_buffer = np.concatenate(
[self.audio_buffer, newData], 0
) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = (
inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
)
if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
# f0
f0 = self.f0_detector.extract(
self.audio_buffer * 32768.0,
uv_interp=True,
silence_front=self.settings.extraConvertSize / self.sampling_rate,
)
f0 = torch.from_numpy(f0).float().unsqueeze(-1).unsqueeze(0)
f0 = f0 * 2 ** (float(self.settings.tran) / 12)
# volume, mask
volume = self.volume_extractor.extract(self.audio_buffer)
mask = (volume > 10 ** (float(-60) / 20)).astype("float")
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
mask = np.array(
[np.max(mask[n : n + 9]) for n in range(len(mask) - 8)] # noqa: E203
)
mask = torch.from_numpy(mask).float().unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
volume = torch.from_numpy(volume).float().unsqueeze(-1).unsqueeze(0)
# embed
audio = (
torch.from_numpy(self.audio_buffer)
.float()
.to(self.useDevice())
.unsqueeze(0)
)
seg_units = self.encoder.encode(audio, self.sampling_rate, self.hop_size)
cropOffset = -1 * (inputSize + crossfadeSize)
cropEnd = -1 * (crossfadeSize)
crop = self.audio_buffer[cropOffset:cropEnd]
rms = np.sqrt(np.square(crop).mean(axis=0))
vol = max(rms, self.prevVol * 0.0)
self.prevVol = vol
return (seg_units, f0, volume, mask, convertSize, vol)
def _onnx_inference(self, data):
if hasattr(self, "onnx_session") is False or self.onnx_session is None:
print("[Voice Changer] No onnx session.")
raise NoModeLoadedException("ONNX")
raise NoModeLoadedException("ONNX")
def _pyTorch_inference(self, data):
if hasattr(self, "model") is False or self.model is None:
print("[Voice Changer] No pyTorch session.")
raise NoModeLoadedException("pytorch")
c = data[0].to(self.useDevice())
f0 = data[1].to(self.useDevice())
volume = data[2].to(self.useDevice())
mask = data[3].to(self.useDevice())
# convertSize = data[4]
# vol = data[5]
# if vol < self.settings.silentThreshold:
# print("threshold")
# return np.zeros(convertSize).astype(np.int16)
with torch.no_grad():
spk_id = torch.LongTensor(np.array([[self.settings.dstId]])).to(
self.useDevice()
)
seg_output, _, (s_h, s_n) = self.model(
c, f0, volume, spk_id=spk_id, spk_mix_dict=None
)
seg_output *= mask
if self.settings.enableEnhancer:
seg_output, output_sample_rate = self.enhancer.enhance(
seg_output,
self.args.data.sampling_rate,
f0,
self.args.data.block_size,
# adaptive_key=float(self.settings.enhancerTune),
adaptive_key="auto",
silence_front=self.settings.extraConvertSize / self.sampling_rate,
)
result = seg_output.squeeze().cpu().numpy() * 32768.0
return np.array(result).astype(np.int16)
def inference(self, data):
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def destroy(self):
del self.net_g
del self.onnx_session
def __del__(self):
del self.net_g
del self.onnx_session
remove_path = os.path.join("DDSP-SVC")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("DDSP-SVC" + os.path.sep) >= 0:
print("remove", key, file_path)
sys.modules.pop(key)
except: # type:ignore
pass