voice-changer/server/voice_changer/RVC/Pipeline.py
2023-05-04 17:15:53 +09:00

182 lines
5.3 KiB
Python

import numpy as np
from typing import Any
import torch
import torch.nn.functional as F
from Exceptions import (
DeviceChangingException,
HalfPrecisionChangingException,
NotEnoughDataExtimateF0,
)
from voice_changer.RVC.embedder.Embedder import Embedder
from voice_changer.RVC.inferencer.Inferencer import Inferencer
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
class Pipeline(object):
embedder: Embedder
inferencer: Inferencer
pitchExtractor: PitchExtractor
index: Any | None
feature: Any | None
targetSR: int
device: torch.device
isHalf: bool
def __init__(
self,
embedder: Embedder,
inferencer: Inferencer,
pitchExtractor: PitchExtractor,
index: Any | None,
feature: Any | None,
targetSR,
device,
isHalf,
):
self.embedder = embedder
self.inferencer = inferencer
self.pitchExtractor = pitchExtractor
self.index = index
self.feature = feature
self.targetSR = targetSR
self.device = device
self.isHalf = isHalf
self.sr = 16000
self.window = 160
self.device = device
self.isHalf = isHalf
def setDevice(self, device: torch.device):
self.device = device
self.embedder.setDevice(device)
self.inferencer.setDevice(device)
def setPitchExtractor(self, pitchExtractor: PitchExtractor):
self.pitchExtractor = pitchExtractor
def exec(
self,
sid,
audio,
f0_up_key,
index_rate,
if_f0,
silence_front,
embChannels,
repeat,
):
self.t_pad = self.sr * repeat
self.t_pad_tgt = self.targetSR * repeat
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
# ピッチ検出
pitch, pitchf = None, None
try:
if if_f0 == 1:
pitch, pitchf = self.pitchExtractor.extract(
audio_pad,
f0_up_key,
self.sr,
self.window,
silence_front=silence_front,
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(
pitchf, device=self.device, dtype=torch.float
).unsqueeze(0)
except IndexError as e:
print(e)
raise NotEnoughDataExtimateF0()
# tensor型調整
feats = torch.from_numpy(audio_pad)
if self.isHalf is True:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
# embedding
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
try:
feats = self.embedder.extractFeatures(feats, embChannels)
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
elif "same device" in e.__str__():
raise DeviceChangingException()
else:
raise e
# Index - feature抽出
if self.index is not None and self.feature is not None and index_rate != 0:
npy = feats[0].cpu().numpy()
if self.isHalf is True:
npy = npy.astype("float32")
D, I = self.index.search(npy, 1)
npy = self.feature[I.squeeze()]
if self.isHalf is True:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
# ピッチサイズ調整
p_len = audio_pad.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch is not None and pitchf is not None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
p_len = torch.tensor([p_len], device=self.device).long()
# 推論実行
try:
with torch.no_grad():
audio1 = (
(
self.inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
* 32768
)
.data.cpu()
.float()
.numpy()
.astype(np.int16)
)
except RuntimeError as e:
if "HALF" in e.__str__().upper():
raise HalfPrecisionChangingException()
else:
raise e
del feats, p_len, padding_mask
torch.cuda.empty_cache()
if self.t_pad_tgt != 0:
offset = self.t_pad_tgt
end = -1 * self.t_pad_tgt
audio1 = audio1[offset:end]
del pitch, pitchf, sid
torch.cuda.empty_cache()
return audio1