voice-changer/server/voice_changer/VoiceChanger.py
2023-05-04 17:15:53 +09:00

395 lines
15 KiB
Python
Executable File

from typing import Any, Union, cast
from const import TMP_DIR, ModelType
import torch
import os
import traceback
import numpy as np
from dataclasses import dataclass, asdict, field
import resampy
from voice_changer.IORecorder import IORecorder
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.Timer import Timer
from voice_changer.utils.VoiceChangerModel import VoiceChangerModel, AudioInOut
from Exceptions import (
DeviceChangingException,
HalfPrecisionChangingException,
NoModeLoadedException,
NotEnoughDataExtimateF0,
ONNXInputArgumentException,
)
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
providers = [
"OpenVINOExecutionProvider",
"CUDAExecutionProvider",
"DmlExecutionProvider",
"CPUExecutionProvider",
]
STREAM_INPUT_FILE = os.path.join(TMP_DIR, "in.wav")
STREAM_OUTPUT_FILE = os.path.join(TMP_DIR, "out.wav")
@dataclass
class VoiceChangerSettings:
inputSampleRate: int = 48000 # 48000 or 24000
crossFadeOffsetRate: float = 0.1
crossFadeEndRate: float = 0.9
crossFadeOverlapSize: int = 4096
recordIO: int = 0 # 0:off, 1:on
# ↓mutableな物だけ列挙
intData: list[str] = field(
default_factory=lambda: ["inputSampleRate", "crossFadeOverlapSize", "recordIO"]
)
floatData: list[str] = field(
default_factory=lambda: ["crossFadeOffsetRate", "crossFadeEndRate"]
)
strData: list[str] = field(default_factory=lambda: [])
class VoiceChanger:
settings: VoiceChangerSettings
voiceChanger: VoiceChangerModel
ioRecorder: IORecorder
sola_buffer: AudioInOut
def __init__(self, params: VoiceChangerParams):
# 初期化
self.settings = VoiceChangerSettings()
self.onnx_session = None
self.currentCrossFadeOffsetRate = 0.0
self.currentCrossFadeEndRate = 0.0
self.currentCrossFadeOverlapSize = 0 # setting
self.crossfadeSize = 0 # calculated
self.voiceChanger = None
self.modelType: ModelType | None = None
self.params = params
self.gpu_num = torch.cuda.device_count()
self.prev_audio = np.zeros(4096)
self.mps_enabled: bool = (
getattr(torch.backends, "mps", None) is not None
and torch.backends.mps.is_available()
)
print(
f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})"
)
def switchModelType(self, modelType: ModelType):
if hasattr(self, "voiceChanger") and self.voiceChanger is not None:
# return {"status": "ERROR", "msg": "vc is already selected. currently re-select is not implemented"}
del self.voiceChanger
self.voiceChanger = None
self.modelType = modelType
if self.modelType == "MMVCv15":
from voice_changer.MMVCv15.MMVCv15 import MMVCv15
self.voiceChanger = MMVCv15() # type: ignore
elif self.modelType == "MMVCv13":
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
self.voiceChanger = MMVCv13()
elif self.modelType == "so-vits-svc-40v2":
from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2
self.voiceChanger = SoVitsSvc40v2(self.params)
elif self.modelType == "so-vits-svc-40" or self.modelType == "so-vits-svc-40_c":
from voice_changer.SoVitsSvc40.SoVitsSvc40 import SoVitsSvc40
self.voiceChanger = SoVitsSvc40(self.params)
elif self.modelType == "DDSP-SVC":
from voice_changer.DDSP_SVC.DDSP_SVC import DDSP_SVC
self.voiceChanger = DDSP_SVC(self.params)
elif self.modelType == "RVC":
from voice_changer.RVC.RVC import RVC
self.voiceChanger = RVC(self.params)
else:
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
self.voiceChanger = MMVCv13()
return {"status": "OK", "msg": "vc is switched."}
def getModelType(self):
if self.modelType is not None:
return {"status": "OK", "vc": self.modelType}
else:
return {"status": "OK", "vc": "none"}
def loadModel(self, props: LoadModelParams):
try:
return self.voiceChanger.loadModel(props)
except Exception as e:
print(traceback.format_exc())
print("[Voice Changer] Model Load Error! Check your model is valid.", e)
return {"status": "NG"}
def get_info(self):
data = asdict(self.settings)
if hasattr(self, "voiceChanger"):
data.update(self.voiceChanger.get_info())
return data
def update_settings(self, key: str, val: Any):
if key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
self.crossfadeSize = 0
if key == "recordIO" and val == 1:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
self.ioRecorder = IORecorder(
STREAM_INPUT_FILE, STREAM_OUTPUT_FILE, self.settings.inputSampleRate
)
if key == "recordIO" and val == 0:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
pass
if key == "recordIO" and val == 2:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
if hasattr(self, "voiceChanger"):
ret = self.voiceChanger.update_settings(key, val)
if ret is False:
print(f"{key} is not mutable variable or unknown variable!")
else:
print("voice changer is not initialized!")
return self.get_info()
def _generate_strength(self, crossfadeSize: int):
if (
self.crossfadeSize != crossfadeSize
or self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate
or self.currentCrossFadeEndRate != self.settings.crossFadeEndRate
or self.currentCrossFadeOverlapSize != self.settings.crossFadeOverlapSize
):
self.crossfadeSize = crossfadeSize
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
self.currentCrossFadeOverlapSize = self.settings.crossFadeOverlapSize
cf_offset = int(crossfadeSize * self.settings.crossFadeOffsetRate)
cf_end = int(crossfadeSize * self.settings.crossFadeEndRate)
cf_range = cf_end - cf_offset
percent = np.arange(cf_range) / cf_range
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
self.np_prev_strength = np.concatenate(
[
np.ones(cf_offset),
np_prev_strength,
np.zeros(crossfadeSize - cf_offset - len(np_prev_strength)),
]
)
self.np_cur_strength = np.concatenate(
[
np.zeros(cf_offset),
np_cur_strength,
np.ones(crossfadeSize - cf_offset - len(np_cur_strength)),
]
)
print(
f"Generated Strengths: for prev:{self.np_prev_strength.shape}, for cur:{self.np_cur_strength.shape}"
)
# ひとつ前の結果とサイズが変わるため、記録は消去する。
if hasattr(self, "np_prev_audio1") is True:
delattr(self, "np_prev_audio1")
if hasattr(self, "sola_buffer") is True:
del self.sola_buffer
# receivedData: tuple of short
def on_request(
self, receivedData: AudioInOut
) -> tuple[AudioInOut, list[Union[int, float]]]:
return self.on_request_sola(receivedData)
def on_request_sola(
self, receivedData: AudioInOut
) -> tuple[AudioInOut, list[Union[int, float]]]:
try:
processing_sampling_rate = self.voiceChanger.get_processing_sampling_rate()
# 前処理
with Timer("pre-process") as t:
if self.settings.inputSampleRate != processing_sampling_rate:
newData = cast(
AudioInOut,
resampy.resample(
receivedData,
self.settings.inputSampleRate,
processing_sampling_rate,
),
)
else:
newData = receivedData
sola_search_frame = int(0.012 * processing_sampling_rate)
# sola_search_frame = 0
block_frame = newData.shape[0]
crossfade_frame = min(self.settings.crossFadeOverlapSize, block_frame)
self._generate_strength(crossfade_frame)
data = self.voiceChanger.generate_input(
newData, block_frame, crossfade_frame, sola_search_frame
)
preprocess_time = t.secs
# 変換処理
with Timer("main-process") as t:
# Inference
audio = self.voiceChanger.inference(data)
if hasattr(self, "sola_buffer") is True:
np.set_printoptions(threshold=10000)
audio_offset = -1 * (
sola_search_frame + crossfade_frame + block_frame
)
audio = audio[audio_offset:]
a = 0
audio = audio[a:]
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC, https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI
cor_nom = np.convolve(
audio[: crossfade_frame + sola_search_frame],
np.flip(self.sola_buffer),
"valid",
)
cor_den = np.sqrt(
np.convolve(
audio[: crossfade_frame + sola_search_frame] ** 2,
np.ones(crossfade_frame),
"valid",
)
+ 1e-3
)
sola_offset = int(np.argmax(cor_nom / cor_den))
sola_end = sola_offset + block_frame
output_wav = audio[sola_offset:sola_end].astype(np.float64)
output_wav[:crossfade_frame] *= self.np_cur_strength
output_wav[:crossfade_frame] += self.sola_buffer[:]
result = output_wav
else:
print("[Voice Changer] no sola buffer. (You can ignore this.)")
result = np.zeros(4096).astype(np.int16)
if (
hasattr(self, "sola_buffer") is True
and sola_offset < sola_search_frame
):
offset = -1 * (sola_search_frame + crossfade_frame - sola_offset)
end = -1 * (sola_search_frame - sola_offset)
sola_buf_org = audio[offset:end]
self.sola_buffer = sola_buf_org * self.np_prev_strength
else:
self.sola_buffer = audio[-crossfade_frame:] * self.np_prev_strength
# self.sola_buffer = audio[- crossfade_frame:]
mainprocess_time = t.secs
# 後処理
with Timer("post-process") as t:
result = result.astype(np.int16)
if self.settings.inputSampleRate != processing_sampling_rate:
outputData = cast(
AudioInOut,
resampy.resample(
result,
processing_sampling_rate,
self.settings.inputSampleRate,
).astype(np.int16),
)
else:
outputData = result
print_convert_processing(
f" Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz"
)
if self.settings.recordIO == 1:
self.ioRecorder.writeInput(receivedData)
self.ioRecorder.writeOutput(outputData.tobytes())
# if receivedData.shape[0] != outputData.shape[0]:
# print(f"Padding, in:{receivedData.shape[0]} out:{outputData.shape[0]}")
# outputData = pad_array(outputData, receivedData.shape[0])
# # print_convert_processing(
# # f" Padded!, Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
postprocess_time = t.secs
print_convert_processing(
f" [fin] Input/Output size:{receivedData.shape[0]},{outputData.shape[0]}"
)
perf = [preprocess_time, mainprocess_time, postprocess_time]
return outputData, perf
except NoModeLoadedException as e:
print("[Voice Changer] [Exception]", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except ONNXInputArgumentException as e:
print("[Voice Changer] [Exception]", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except HalfPrecisionChangingException as e:
print("[Voice Changer] Switching model configuration....", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except NotEnoughDataExtimateF0 as e:
print("[Voice Changer] not enough data", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except DeviceChangingException as e:
print("[Voice Changer] embedder:", e)
return np.zeros(1).astype(np.int16), [0, 0, 0]
except Exception as e:
print("VC PROCESSING!!!! EXCEPTION!!!", e)
print(traceback.format_exc())
return np.zeros(1).astype(np.int16), [0, 0, 0]
def export2onnx(self):
return self.voiceChanger.export2onnx()
##############
def merge_models(self, request: str):
self.voiceChanger.merge_models(request)
return self.get_info()
PRINT_CONVERT_PROCESSING: bool = False
# PRINT_CONVERT_PROCESSING = True
def print_convert_processing(mess: str):
if PRINT_CONVERT_PROCESSING is True:
print(mess)
def pad_array(arr: AudioInOut, target_length: int):
current_length = arr.shape[0]
if current_length >= target_length:
return arr
else:
pad_width = target_length - current_length
pad_left = pad_width // 2
pad_right = pad_width - pad_left
padded_arr = np.pad(
arr, (pad_left, pad_right), "constant", constant_values=(0, 0)
)
return padded_arr