voice-changer/docker_trainer
2023-01-31 18:27:26 +09:00
..
model WIP: v1.5support 1 2023-01-31 17:16:45 +09:00
Dockerfile WIP: v1.5support 1 2023-01-31 17:16:45 +09:00
README.md WIP: 2023-01-31 18:27:26 +09:00
start_trainer.sh WIP: 2023-01-31 18:27:26 +09:00
warmup.py WIP: v1.5support 1 2023-01-31 17:16:45 +09:00

MMVC Server

起動方法

(1) Datasetをtrainer/datasetにおく

trainer/dataset/
├── 00_myvoice
│   ├── text
│   │   ├── emotion001.txt
│   │   ├── emotion002.txt
...
│   │   └── emotion100.txt
│   └── wav
│       ├── emotion001.wav
│       ├── emotion002.wav
...
│       └── emotion100.wav
├── 1205_zundamon
│   ├── text
│   │   ├── emoNormal_001.txt
│   │   ├── emoNormal_002.txt
...
│   │   └── emoNormal_100.txt
│   └── wav
│       ├── emoNormal_001.wav
│       ├── emoNormal_002.wav
...
│       └── emoNormal_100.wav
├── 344_tsumugi
│   ├── text
│   │   ├── VOICEACTRESS100_001.txt
│   │   ├── VOICEACTRESS100_002.txt
...
│   │   └── emoNormal_100.txt
│   └── wav
│       ├── VOICEACTRESS100_001.wav
│       ├── VOICEACTRESS100_002.wav
...
│       └── emoNormal_100.wav
└── multi_speaker_correspondence.txt

(2) start_trainer.shをrootにコピー

(3) bash start_trainer.shを実行

(4) Docker内で次のコマンドを実行 batch sizeは適宜調整

$ python3 normalize.py True
$ python3 create_dataset.py -f train_config -s 24000 -m dataset/multi_speaker_correspondence.txt
$ tensorboard --logdir logs --port 5000
$ python3 train_ms.py -c configs/train_config.json -m 20220306_24000 -fg fine_model/G_v15_best.pth -fd fine_model/D_v15_best.pth