voice-changer/server/voice_changer/MMVCv15/models/models.py
2023-06-22 06:56:00 +09:00

439 lines
18 KiB
Python

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from .modules import ResidualCouplingLayer, Flip, WN, ResBlock1, ResBlock2, LRELU_SLOPE
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from .commons import init_weights, get_padding, sequence_mask
from .generator import SiFiGANGenerator
from .features import SignalGenerator, dilated_factor
class TextEncoder(nn.Module):
def __init__(self, out_channels, hidden_channels, requires_grad=True):
super().__init__()
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
# パラメータを学習しない
if requires_grad is False:
for param in self.parameters():
param.requires_grad = False
def forward(self, x, x_lengths):
x = torch.transpose(x.half(), 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return x, m, logs, x_mask
class ResidualCouplingBlock(nn.Module):
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0, requires_grad=True):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
self.flows.append(Flip())
# パラメータを学習しない
if requires_grad is False:
for param in self.parameters():
param.requires_grad = False
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder(nn.Module):
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, requires_grad=True):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
# パラメータを学習しない
if requires_grad is False:
for param in self.parameters():
param.requires_grad = False
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class Generator(torch.nn.Module):
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, requires_grad=True):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
resblock = ResBlock1 if resblock == "1" else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if requires_grad is False:
for param in self.parameters():
param.requires_grad = False
def forward(self, x, g=None):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print("Removing weight norm...")
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
]
)
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
# periods = [2,3,5,7,11]
periods = [3, 5, 7, 11, 13]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat, flag=True):
if flag:
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
else:
y_d_gs = []
with torch.no_grad():
for i, d in enumerate(self.discriminators):
y_d_g, _ = d(y_hat)
y_d_gs.append(y_d_g)
return y_d_gs
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_flow,
dec_out_channels=1,
dec_kernel_size=7,
n_speakers=0,
gin_channels=0,
requires_grad_pe=True,
requires_grad_flow=True,
requires_grad_text_enc=True,
requires_grad_dec=True,
requires_grad_emb_g=True,
sample_rate=24000,
hop_size=128,
sine_amp=0.1,
noise_amp=0.003,
signal_types=["sine"],
dense_factors=[0.5, 1, 4, 8],
upsample_scales=[8, 4, 2, 2],
):
super().__init__()
self.spec_channels = spec_channels
self.hidden_channels = hidden_channels
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.dec_out_channels = dec_out_channels
self.dec_kernel_size = dec_kernel_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.requires_grad_pe = requires_grad_pe
self.requires_grad_flow = requires_grad_flow
self.requires_grad_text_enc = requires_grad_text_enc
self.requires_grad_dec = requires_grad_dec
self.requires_grad_emb_g = requires_grad_emb_g
self.sample_rate = sample_rate
self.hop_size = hop_size
self.sine_amp = sine_amp
self.noise_amp = noise_amp
self.signal_types = signal_types
self.dense_factors = dense_factors
self.upsample_scales = upsample_scales
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels, requires_grad=requires_grad_pe)
self.enc_p = TextEncoder(inter_channels, hidden_channels, requires_grad=requires_grad_text_enc)
self.dec = SiFiGANGenerator(in_channels=inter_channels, out_channels=dec_out_channels, channels=upsample_initial_channel, kernel_size=dec_kernel_size, upsample_scales=upsample_rates, upsample_kernel_sizes=upsample_kernel_sizes, requires_grad=requires_grad_dec)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, n_flows=n_flow, gin_channels=gin_channels, requires_grad=requires_grad_flow)
self.signal_generator = SignalGenerator(sample_rate=sample_rate, hop_size=hop_size, noise_amp=noise_amp, signal_types=signal_types)
if n_speakers > 1:
self.emb_g = nn.Embedding(n_speakers, gin_channels)
self.emb_g.requires_grad = requires_grad_emb_g
def forward(self, x, x_lengths, y, y_lengths, f0, slice_id, sid=None, target_ids=None):
pass
# sin, d = self.make_sin_d(f0)
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
# # target sid 作成
# target_sids = self.make_random_target_sids(target_ids, sid)
# if self.n_speakers > 0:
# g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
# tgt_g = self.emb_g(target_sids).unsqueeze(-1) # [b, h, 1]
# else:
# g = None
# # PE
# z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
# # Flow
# z_p = self.flow(z, y_mask, g=g)
# # VC
# tgt_z = self.flow(z_p, y_mask, g=tgt_g, reverse=True)
# # アライメントの作成
# liner_alignment = F.one_hot(torch.arange(0, x.shape[2] + 2)).cuda()
# liner_alignment = torch.stack([liner_alignment for _ in range(x.shape[0])], axis=0)
# liner_alignment = F.interpolate(liner_alignment.float(), size=(z.shape[2]), mode="linear", align_corners=True)
# liner_alignment = liner_alignment[:, 1:-1, :]
# # TextEncとPEのshape合わせ
# m_p = torch.matmul(m_p, liner_alignment)
# logs_p = torch.matmul(logs_p, liner_alignment)
# # slice
# z_slice = slice_segments(z, slice_id, self.segment_size)
# # targetのslice
# tgt_z_slice = slice_segments(tgt_z, slice_id, self.segment_size)
# # Dec
# o = self.dec(sin, z_slice, d, sid=g)
# tgt_o = self.dec(sin, tgt_z_slice, d, sid=tgt_g)
# return (o, tgt_o), slice_id, x_mask, y_mask, ((z, z_p, m_p), logs_p, m_q, logs_q)
def make_sin_d(self, f0):
# f0 から sin と d を作成
# f0 : [b, 1, t]
# sin : [b, 1, t]
# d : [4][b, 1, t]
prod_upsample_scales = np.cumprod(self.upsample_scales)
dfs_batch = []
for df, us in zip(self.dense_factors, prod_upsample_scales):
dilated_tensor = dilated_factor(f0, self.sample_rate, df)
# result += [torch.repeat_interleave(dilated_tensor, us, dim=1)]
result = [torch.stack([dilated_tensor for _ in range(us)], -1).reshape(dilated_tensor.shape[0], -1)]
dfs_batch.append(torch.cat(result, dim=0).unsqueeze(1))
in_batch = self.signal_generator(f0)
return in_batch, dfs_batch
def make_random_target_sids(self, target_ids, sid):
# target_sids は target_ids をランダムで埋める
target_sids = torch.zeros_like(sid)
for i in range(len(target_sids)):
source_id = sid[i]
deleted_target_ids = target_ids[target_ids != source_id] # source_id と target_id が同じにならないよう sid と同じものを削除
if len(deleted_target_ids) >= 1:
target_sids[i] = deleted_target_ids[torch.randint(len(deleted_target_ids), (1,))]
else:
# target_id 候補が無いときは仕方ないので sid を使う
target_sids[i] = source_id
return target_sids
def voice_conversion(self, y, y_lengths, f0, sid_src, sid_tgt):
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
sin, d = self.make_sin_d(f0)
g_src = self.emb_g(sid_src).unsqueeze(-1)
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
z, _, _, y_mask = self.enc_q(y, y_lengths, g=g_src)
z_p = self.flow(z, y_mask, g=g_src)
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
# print("VC", sin.device, d[0].device, g_tgt.device)
o_hat = self.dec(sin, z_hat * y_mask, d, sid=g_tgt)
return o_hat[0]
def voice_ra_pa_db(self, y, y_lengths, sid_src, sid_tgt):
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
g_src = self.emb_g(sid_src).unsqueeze(-1)
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
o_hat = self.dec(z * y_mask, g=g_tgt)
return o_hat, y_mask, (z)
def voice_ra_pa_da(self, y, y_lengths, sid_src, sid_tgt):
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
g_src = self.emb_g(sid_src).unsqueeze(-1)
# g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
o_hat = self.dec(z * y_mask, g=g_src)
return o_hat, y_mask, (z)
def voice_conversion_cycle(self, y, y_lengths, sid_src, sid_tgt):
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
g_src = self.emb_g(sid_src).unsqueeze(-1)
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
z_p = self.flow(z, y_mask, g=g_src)
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
z_p_hat = self.flow(z_hat, y_mask, g=g_tgt)
z_hat_hat = self.flow(z_p_hat, y_mask, g=g_src, reverse=True)
o_hat = self.dec(z_hat_hat * y_mask, g=g_tgt)
return o_hat, y_mask, (z, z_p, z_hat)
def save_synthesizer(self, path):
enc_q = self.enc_q.state_dict()
dec = self.dec.state_dict()
emb_g = self.emb_g.state_dict()
torch.save({"enc_q": enc_q, "dec": dec, "emb_g": emb_g}, path)
def load_synthesizer(self, path):
dict = torch.load(path, map_location="cpu")
enc_q = dict["enc_q"]
dec = dict["dec"]
emb_g = dict["emb_g"]
self.enc_q.load_state_dict(enc_q)
self.dec.load_state_dict(dec)
self.emb_g.load_state_dict(emb_g)