voice-changer/server/voice_changer/RVC/inferencer/EasyVCInferencerONNX.py
2024-02-28 23:08:49 +09:00

47 lines
1.5 KiB
Python

import torch
import numpy as np
from const import EnumInferenceTypes
from voice_changer.RVC.inferencer.OnnxRVCInferencer import OnnxRVCInferencer
class EasyVCInferencerONNX(OnnxRVCInferencer):
def loadModel(self, file: str, gpu: int, inferencerTypeVersion: str | None = None):
super().loadModel(file, gpu, inferencerTypeVersion)
self.setProps(EnumInferenceTypes.easyVC, file, self.isHalf, gpu)
return self
def infer(
self,
feats: torch.Tensor,
pitch_length: torch.Tensor,
pitch: torch.Tensor | None,
pitchf: torch.Tensor | None,
sid: torch.Tensor,
convert_length: int | None,
) -> torch.Tensor:
if self.isHalf:
audio1 = self.model.run(
["audio"],
{
"feats": feats.cpu().numpy().astype(np.float16),
"p_len": pitch_length.cpu().numpy().astype(np.int64),
},
)
else:
audio1 = self.model.run(
["audio"],
{
"feats": feats.cpu().numpy().astype(np.float32),
"p_len": pitch_length.cpu().numpy().astype(np.int64),
},
)
res = audio1[0][0][0]
# if self.inferencerTypeVersion == "v2.1" or self.inferencerTypeVersion == "v1.1":
# res = audio1[0]
# else:
# res = np.array(audio1)[0][0, 0]
# res = np.clip(res, -1.0, 1.0)
return torch.tensor(res)