voice-changer/server/voice_changer/MMVCv15/models/residual_block.py
2023-06-22 06:56:00 +09:00

258 lines
8.6 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2022 Reo Yoneyama (Nagoya University)
# MIT License (https://opensource.org/licenses/MIT)
"""Residual block modules.
References:
- https://github.com/kan-bayashi/ParallelWaveGAN
- https://github.com/bigpon/QPPWG
- https://github.com/r9y9/wavenet_vocoder
"""
from logging import getLogger
import torch
import torch.nn as nn
from .snake import Snake
from .index import index_initial, pd_indexing
# A logger for this file
logger = getLogger(__name__)
class Conv1d(nn.Conv1d):
"""Conv1d module with customized initialization."""
def __init__(self, *args, **kwargs):
"""Initialize Conv1d module."""
super(Conv1d, self).__init__(*args, **kwargs)
def reset_parameters(self):
"""Reset parameters."""
nn.init.kaiming_normal_(self.weight, nonlinearity="relu")
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class Conv1d1x1(Conv1d):
"""1x1 Conv1d with customized initialization."""
def __init__(self, in_channels, out_channels, bias=True):
"""Initialize 1x1 Conv1d module."""
super(Conv1d1x1, self).__init__(in_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=bias)
class Conv2d(nn.Conv2d):
"""Conv2d module with customized initialization."""
def __init__(self, *args, **kwargs):
"""Initialize Conv2d module."""
super(Conv2d, self).__init__(*args, **kwargs)
def reset_parameters(self):
"""Reset parameters."""
nn.init.kaiming_normal_(self.weight, mode="fan_out", nonlinearity="relu")
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class Conv2d1x1(Conv2d):
"""1x1 Conv2d with customized initialization."""
def __init__(self, in_channels, out_channels, bias=True):
"""Initialize 1x1 Conv2d module."""
super(Conv2d1x1, self).__init__(in_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=bias)
class ResidualBlock(nn.Module):
"""Residual block module in HiFiGAN."""
def __init__(
self,
kernel_size=3,
channels=512,
dilations=(1, 3, 5),
bias=True,
use_additional_convs=True,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.1},
):
"""Initialize ResidualBlock module.
Args:
kernel_size (int): Kernel size of dilation convolution layer.
channels (int): Number of channels for convolution layer.
dilations (List[int]): List of dilation factors.
use_additional_convs (bool): Whether to use additional convolution layers.
bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
"""
super().__init__()
self.use_additional_convs = use_additional_convs
self.convs1 = nn.ModuleList()
if use_additional_convs:
self.convs2 = nn.ModuleList()
assert kernel_size % 2 == 1, "Kernel size must be odd number."
for dilation in dilations:
if nonlinear_activation == "Snake":
nonlinear = Snake(channels, **nonlinear_activation_params)
else:
nonlinear = getattr(nn, nonlinear_activation)(**nonlinear_activation_params)
self.convs1 += [
nn.Sequential(
nonlinear,
nn.Conv1d(
channels,
channels,
kernel_size,
dilation=dilation,
bias=bias,
padding=(kernel_size - 1) // 2 * dilation,
),
)
]
if use_additional_convs:
if nonlinear_activation == "Snake":
nonlinear = Snake(channels, **nonlinear_activation_params)
else:
nonlinear = getattr(nn, nonlinear_activation)(**nonlinear_activation_params)
self.convs2 += [
nn.Sequential(
nonlinear,
nn.Conv1d(
channels,
channels,
kernel_size,
dilation=1,
bias=bias,
padding=(kernel_size - 1) // 2,
),
)
]
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, channels, T).
Returns:
Tensor: Output tensor (B, channels, T).
"""
for idx in range(len(self.convs1)):
xt = self.convs1[idx](x)
if self.use_additional_convs:
xt = self.convs2[idx](xt)
x = xt + x
return x
class AdaptiveResidualBlock(nn.Module):
"""Residual block module in HiFiGAN."""
def __init__(
self,
kernel_size=3,
channels=512,
dilations=(1, 2, 4),
bias=True,
use_additional_convs=True,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.1},
):
"""Initialize ResidualBlock module.
Args:
kernel_size (int): Kernel size of dilation convolution layer.
channels (int): Number of channels for convolution layer.
bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
"""
super().__init__()
self.use_additional_convs = use_additional_convs
assert kernel_size == 3, "Currently only kernel_size = 3 is supported."
self.channels = channels
self.dilations = dilations
self.nonlinears = nn.ModuleList()
self.convsC = nn.ModuleList()
self.convsP = nn.ModuleList()
self.convsF = nn.ModuleList()
if use_additional_convs:
self.convsA = nn.ModuleList()
for _ in dilations:
if nonlinear_activation == "Snake":
self.nonlinears += [Snake(channels, **nonlinear_activation_params)]
else:
self.nonlinears += [getattr(nn, nonlinear_activation)(**nonlinear_activation_params)]
self.convsC += [
Conv1d1x1(
channels,
channels,
bias=bias,
),
]
self.convsP += [
Conv1d1x1(
channels,
channels,
bias=bias,
),
]
self.convsF += [
Conv1d1x1(
channels,
channels,
bias=bias,
),
]
if use_additional_convs:
if nonlinear_activation == "Snake":
nonlinear = Snake(channels, **nonlinear_activation_params)
else:
nonlinear = getattr(nn, nonlinear_activation)(**nonlinear_activation_params)
self.convsA += [
nn.Sequential(
nonlinear,
nn.Conv1d(
channels,
channels,
kernel_size,
dilation=1,
bias=bias,
padding=(kernel_size - 1) // 2,
),
)
]
def forward(self, x, d):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, channels, T).
d (Tensor): Input pitch-dependent dilated factors (B, 1, T).
Returns:
Tensor: Output tensor (B, channels, T).
"""
batch_index, ch_index = index_initial(x.size(0), self.channels, tensor=False)
batch_index = torch.tensor(batch_index).to(x.device)
ch_index = torch.tensor(ch_index).to(x.device)
for i, dilation in enumerate(self.dilations):
xt = self.nonlinears[i](x)
xP, xF = pd_indexing(xt, d, dilation, batch_index, ch_index)
xt = self.convsC[i](xt) + self.convsP[i](xP) + self.convsF[i](xF)
if self.use_additional_convs:
xt = self.convsA[i](xt)
x = xt + x
return x