mirror of
https://github.com/w-okada/voice-changer.git
synced 2025-01-23 21:45:00 +03:00
517 lines
18 KiB
Python
Executable File
517 lines
18 KiB
Python
Executable File
import sys, os, struct, argparse, logging, shutil, base64, traceback
|
|
from dataclasses import dataclass
|
|
from datetime import datetime
|
|
from distutils.util import strtobool
|
|
|
|
import numpy as np
|
|
from scipy.io.wavfile import write, read
|
|
|
|
sys.path.append("MMVC_Trainer")
|
|
sys.path.append("MMVC_Trainer/text")
|
|
|
|
from fastapi.routing import APIRoute
|
|
from fastapi import HTTPException, Request, Response, FastAPI, UploadFile, File, Form
|
|
from fastapi.staticfiles import StaticFiles
|
|
from fastapi.encoders import jsonable_encoder
|
|
from fastapi.responses import JSONResponse
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
import uvicorn
|
|
import socketio
|
|
from pydantic import BaseModel
|
|
|
|
from typing import Callable
|
|
|
|
from mods.Trainer_Speakers import mod_get_speakers
|
|
from mods.Trainer_Training import mod_post_pre_training, mod_post_start_training, mod_post_stop_training, mod_get_related_files, mod_get_tail_training_log
|
|
from mods.Trainer_Model import mod_get_model, mod_delete_model
|
|
from mods.Trainer_Models import mod_get_models
|
|
from mods.Trainer_MultiSpeakerSetting import mod_get_multi_speaker_setting, mod_post_multi_speaker_setting
|
|
from mods.Trainer_Speaker_Voice import mod_get_speaker_voice
|
|
from mods.Trainer_Speaker_Voices import mod_get_speaker_voices
|
|
from mods.Trainer_Speaker import mod_delete_speaker
|
|
from mods.FileUploader import upload_file, concat_file_chunks
|
|
from mods.VoiceChanger import VoiceChanger
|
|
from mods.ssl import create_self_signed_cert
|
|
|
|
|
|
|
|
# File Uploader
|
|
|
|
# Trainer Rest Internal
|
|
|
|
|
|
class UvicornSuppressFilter(logging.Filter):
|
|
def filter(self, record):
|
|
return False
|
|
|
|
|
|
logger = logging.getLogger("uvicorn.error")
|
|
logger.addFilter(UvicornSuppressFilter())
|
|
# logger.propagate = False
|
|
logger = logging.getLogger("multipart.multipart")
|
|
logger.propagate = False
|
|
|
|
|
|
@dataclass
|
|
class ExApplicationInfo():
|
|
external_tensorboard_port: int
|
|
|
|
|
|
exApplitionInfo = ExApplicationInfo(external_tensorboard_port=0)
|
|
|
|
|
|
class VoiceModel(BaseModel):
|
|
gpu: int
|
|
srcId: int
|
|
dstId: int
|
|
timestamp: int
|
|
prefixChunkSize: int
|
|
buffer: str
|
|
|
|
|
|
class MyCustomNamespace(socketio.AsyncNamespace):
|
|
def __init__(self, namespace):
|
|
super().__init__(namespace)
|
|
|
|
def loadModel(self, config, model):
|
|
if hasattr(self, 'voiceChanger') == True:
|
|
self.voiceChanger.destroy()
|
|
self.voiceChanger = VoiceChanger(config, model)
|
|
|
|
# def loadWhisperModel(self, model):
|
|
# self.whisper = Whisper()
|
|
# self.whisper.loadModel("tiny")
|
|
# print("load")
|
|
|
|
def changeVoice(self, gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData):
|
|
# if hasattr(self, 'whisper') == True:
|
|
# self.whisper.addData(unpackedData)
|
|
if hasattr(self, 'voiceChanger') == True:
|
|
return self.voiceChanger.on_request(gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
|
else:
|
|
print("Voice Change is not loaded. Did you load a correct model?")
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
# def transcribe(self):
|
|
# if hasattr(self, 'whisper') == True:
|
|
# self.whisper.transcribe(0)
|
|
# else:
|
|
# print("whisper not found")
|
|
|
|
def on_connect(self, sid, environ):
|
|
# print('[{}] connet sid : {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S') , sid))
|
|
pass
|
|
|
|
async def on_request_message(self, sid, msg):
|
|
# print("on_request_message", torch.cuda.memory_allocated())
|
|
gpu = int(msg[0])
|
|
srcId = int(msg[1])
|
|
dstId = int(msg[2])
|
|
timestamp = int(msg[3])
|
|
prefixChunkSize = int(msg[4])
|
|
data = msg[5]
|
|
# print(srcId, dstId, timestamp)
|
|
unpackedData = np.array(struct.unpack(
|
|
'<%sh' % (len(data) // struct.calcsize('<h')), data))
|
|
audio1 = self.changeVoice(
|
|
gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
|
|
|
bin = struct.pack('<%sh' % len(audio1), *audio1)
|
|
await self.emit('response', [timestamp, bin])
|
|
|
|
def on_disconnect(self, sid):
|
|
# print('[{}] disconnect'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
|
|
pass
|
|
|
|
|
|
def setupArgParser():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-t", type=str, default="MMVC",
|
|
help="Server type. MMVC|TRAIN")
|
|
parser.add_argument("-p", type=int, default=8080, help="port")
|
|
parser.add_argument("-c", type=str, help="path for the config.json")
|
|
parser.add_argument("-m", type=str, help="path for the model file")
|
|
parser.add_argument("--https", type=strtobool,
|
|
default=False, help="use https")
|
|
parser.add_argument("--httpsKey", type=str,
|
|
default="ssl.key", help="path for the key of https")
|
|
parser.add_argument("--httpsCert", type=str,
|
|
default="ssl.cert", help="path for the cert of https")
|
|
parser.add_argument("--httpsSelfSigned", type=strtobool,
|
|
default=True, help="generate self-signed certificate")
|
|
parser.add_argument("--colab", type=strtobool,
|
|
default=False, help="run on colab")
|
|
return parser
|
|
|
|
|
|
def printMessage(message, level=0):
|
|
if level == 0:
|
|
print(f"\033[17m{message}\033[0m")
|
|
elif level == 1:
|
|
print(f"\033[34m {message}\033[0m")
|
|
elif level == 2:
|
|
print(f"\033[32m {message}\033[0m")
|
|
else:
|
|
print(f"\033[47m {message}\033[0m")
|
|
|
|
|
|
global app_socketio
|
|
global app_fastapi
|
|
|
|
parser = setupArgParser()
|
|
args = parser.parse_args()
|
|
|
|
printMessage(f"Phase name:{__name__}", level=2)
|
|
thisFilename = os.path.basename(__file__)[:-3]
|
|
|
|
|
|
class ValidationErrorLoggingRoute(APIRoute):
|
|
def get_route_handler(self) -> Callable:
|
|
original_route_handler = super().get_route_handler()
|
|
|
|
async def custom_route_handler(request: Request) -> Response:
|
|
try:
|
|
return await original_route_handler(request)
|
|
except Exception as exc:
|
|
print("Exception", request.url, str(exc))
|
|
body = await request.body()
|
|
detail = {"errors": exc.errors(), "body": body.decode()}
|
|
raise HTTPException(status_code=422, detail=detail)
|
|
|
|
return custom_route_handler
|
|
|
|
|
|
if __name__ == thisFilename or args.colab == True:
|
|
printMessage(f"PHASE3:{__name__}", level=2)
|
|
TYPE = args.t
|
|
PORT = args.p
|
|
CONFIG = args.c
|
|
MODEL = args.m
|
|
|
|
if os.getenv("EX_TB_PORT"):
|
|
EX_TB_PORT = os.environ["EX_TB_PORT"]
|
|
exApplitionInfo.external_tensorboard_port = int(EX_TB_PORT)
|
|
|
|
|
|
app_fastapi = FastAPI()
|
|
app_fastapi.router.route_class = ValidationErrorLoggingRoute
|
|
app_fastapi.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
app_fastapi.mount(
|
|
"/front", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
|
|
|
app_fastapi.mount(
|
|
"/trainer", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
|
|
|
app_fastapi.mount(
|
|
"/recorder", StaticFiles(directory="../frontend/dist", html=True), name="static")
|
|
|
|
sio = socketio.AsyncServer(
|
|
async_mode='asgi',
|
|
cors_allowed_origins='*'
|
|
)
|
|
namespace = MyCustomNamespace('/test')
|
|
sio.register_namespace(namespace)
|
|
if CONFIG and MODEL:
|
|
namespace.loadModel(CONFIG, MODEL)
|
|
# namespace.loadWhisperModel("base")
|
|
|
|
app_socketio = socketio.ASGIApp(
|
|
sio,
|
|
other_asgi_app=app_fastapi,
|
|
static_files={
|
|
'/assets/icons/github.svg': {
|
|
'filename': '../frontend/dist/assets/icons/github.svg',
|
|
'content_type': 'image/svg+xml'
|
|
},
|
|
'': '../frontend/dist',
|
|
'/': '../frontend/dist/index.html',
|
|
}
|
|
)
|
|
|
|
@app_fastapi.get("/api/hello")
|
|
async def index():
|
|
return {"result": "Index"}
|
|
|
|
############
|
|
# File Uploder
|
|
# ##########
|
|
UPLOAD_DIR = "upload_dir"
|
|
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
|
MODEL_DIR = "MMVC_Trainer/logs"
|
|
os.makedirs(MODEL_DIR, exist_ok=True)
|
|
|
|
@app_fastapi.post("/upload_file")
|
|
async def post_upload_file(
|
|
file: UploadFile = File(...),
|
|
filename: str = Form(...)
|
|
):
|
|
return upload_file(UPLOAD_DIR, file, filename)
|
|
|
|
@app_fastapi.post("/load_model")
|
|
async def post_load_model(
|
|
modelFilename: str = Form(...),
|
|
modelFilenameChunkNum: int = Form(...),
|
|
configFilename: str = Form(...)
|
|
):
|
|
|
|
modelFilePath = concat_file_chunks(
|
|
UPLOAD_DIR, modelFilename, modelFilenameChunkNum, UPLOAD_DIR)
|
|
print(f'File saved to: {modelFilePath}')
|
|
configFilePath = os.path.join(UPLOAD_DIR, configFilename)
|
|
|
|
namespace.loadModel(configFilePath, modelFilePath)
|
|
return {"load": f"{modelFilePath}, {configFilePath}"}
|
|
|
|
@app_fastapi.post("/load_model_for_train")
|
|
async def post_load_model_for_train(
|
|
modelGFilename: str = Form(...),
|
|
modelGFilenameChunkNum: int = Form(...),
|
|
modelDFilename: str = Form(...),
|
|
modelDFilenameChunkNum: int = Form(...),
|
|
):
|
|
|
|
modelGFilePath = concat_file_chunks(
|
|
UPLOAD_DIR, modelGFilename, modelGFilenameChunkNum, MODEL_DIR)
|
|
modelDFilePath = concat_file_chunks(
|
|
UPLOAD_DIR, modelDFilename, modelDFilenameChunkNum, MODEL_DIR)
|
|
return {"File saved": f"{modelGFilePath}, {modelDFilePath}"}
|
|
|
|
@app_fastapi.post("/extract_voices")
|
|
async def post_load_model(
|
|
zipFilename: str = Form(...),
|
|
zipFileChunkNum: int = Form(...),
|
|
):
|
|
zipFilePath = concat_file_chunks(
|
|
UPLOAD_DIR, zipFilename, zipFileChunkNum, UPLOAD_DIR)
|
|
shutil.unpack_archive(zipFilePath, "MMVC_Trainer/dataset/textful/")
|
|
return {"Zip file unpacked": f"{zipFilePath}"}
|
|
|
|
############
|
|
# Voice Changer
|
|
# ##########
|
|
|
|
@app_fastapi.post("/test")
|
|
async def post_test(voice: VoiceModel):
|
|
try:
|
|
# print("POST REQUEST PROCESSING....")
|
|
gpu = voice.gpu
|
|
srcId = voice.srcId
|
|
dstId = voice.dstId
|
|
timestamp = voice.timestamp
|
|
prefixChunkSize = voice.prefixChunkSize
|
|
buffer = voice.buffer
|
|
wav = base64.b64decode(buffer)
|
|
|
|
if wav == 0:
|
|
samplerate, data = read("dummy.wav")
|
|
unpackedData = data
|
|
else:
|
|
unpackedData = np.array(struct.unpack(
|
|
'<%sh' % (len(wav) // struct.calcsize('<h')), wav))
|
|
write("logs/received_data.wav", 24000,
|
|
unpackedData.astype(np.int16))
|
|
|
|
changedVoice = namespace.changeVoice(
|
|
gpu, srcId, dstId, timestamp, prefixChunkSize, unpackedData)
|
|
|
|
changedVoiceBase64 = base64.b64encode(changedVoice).decode('utf-8')
|
|
data = {
|
|
"gpu": gpu,
|
|
"srcId": srcId,
|
|
"dstId": dstId,
|
|
"timestamp": timestamp,
|
|
"prefixChunkSize": prefixChunkSize,
|
|
"changedVoiceBase64": changedVoiceBase64
|
|
}
|
|
|
|
json_compatible_item_data = jsonable_encoder(data)
|
|
|
|
return JSONResponse(content=json_compatible_item_data)
|
|
|
|
except Exception as e:
|
|
print("REQUEST PROCESSING!!!! EXCEPTION!!!", e)
|
|
print(traceback.format_exc())
|
|
return str(e)
|
|
|
|
# Trainer REST API ※ ColabがTop直下のパスにしかPOSTを投げれないようなので"REST風"
|
|
|
|
@app_fastapi.get("/get_speakers")
|
|
async def get_speakers():
|
|
return mod_get_speakers()
|
|
|
|
@app_fastapi.delete("/delete_speaker")
|
|
async def delete_speaker(speaker: str = Form(...)):
|
|
return mod_delete_speaker(speaker)
|
|
|
|
@app_fastapi.get("/get_speaker_voices")
|
|
async def get_speaker_voices(speaker: str):
|
|
return mod_get_speaker_voices(speaker)
|
|
|
|
@app_fastapi.get("/get_speaker_voice")
|
|
async def get_speaker_voices(speaker: str, voice: str):
|
|
return mod_get_speaker_voice(speaker, voice)
|
|
|
|
@app_fastapi.get("/get_multi_speaker_setting")
|
|
async def get_multi_speaker_setting():
|
|
return mod_get_multi_speaker_setting()
|
|
|
|
@app_fastapi.post("/post_multi_speaker_setting")
|
|
async def post_multi_speaker_setting(setting: str = Form(...)):
|
|
return mod_post_multi_speaker_setting(setting)
|
|
|
|
@app_fastapi.get("/get_models")
|
|
async def get_models():
|
|
return mod_get_models()
|
|
|
|
@app_fastapi.get("/get_model")
|
|
async def get_model(model: str):
|
|
return mod_get_model(model)
|
|
|
|
@app_fastapi.delete("/delete_model")
|
|
async def delete_model(model: str = Form(...)):
|
|
return mod_delete_model(model)
|
|
|
|
@app_fastapi.post("/post_pre_training")
|
|
async def post_pre_training(batch: int = Form(...)):
|
|
return mod_post_pre_training(batch)
|
|
|
|
@app_fastapi.post("/post_start_training")
|
|
async def post_start_training(enable_finetuning: bool = Form(...),GModel: str = Form(...),DModel: str = Form(...)):
|
|
print("POST START TRAINING..")
|
|
return mod_post_start_training(enable_finetuning, GModel, DModel)
|
|
|
|
@app_fastapi.post("/post_stop_training")
|
|
async def post_stop_training():
|
|
print("POST STOP TRAINING..")
|
|
return mod_post_stop_training()
|
|
|
|
@app_fastapi.get("/get_related_files")
|
|
async def get_related_files():
|
|
return mod_get_related_files()
|
|
|
|
@app_fastapi.get("/get_tail_training_log")
|
|
async def get_tail_training_log(num: int):
|
|
return mod_get_tail_training_log(num)
|
|
|
|
@app_fastapi.get("/get_ex_application_info")
|
|
async def get_ex_application_info():
|
|
json_compatible_item_data = jsonable_encoder(exApplitionInfo)
|
|
return JSONResponse(content=json_compatible_item_data)
|
|
|
|
if __name__ == '__mp_main__':
|
|
printMessage(f"PHASE2:{__name__}", level=2)
|
|
|
|
if __name__ == '__main__':
|
|
printMessage(f"PHASE1:{__name__}", level=2)
|
|
TYPE = args.t
|
|
PORT = args.p
|
|
CONFIG = args.c
|
|
MODEL = args.m
|
|
|
|
if TYPE != "MMVC" and TYPE != "TRAIN":
|
|
print("Type(-t) should be MMVC or TRAIN")
|
|
exit(1)
|
|
|
|
printMessage(f"Start MMVC SocketIO Server", level=0)
|
|
printMessage(f"CONFIG:{CONFIG}, MODEL:{MODEL}", level=1)
|
|
|
|
if args.colab == False:
|
|
if os.getenv("EX_PORT"):
|
|
EX_PORT = os.environ["EX_PORT"]
|
|
printMessage(
|
|
f"External_Port:{EX_PORT} Internal_Port:{PORT}", level=1)
|
|
else:
|
|
printMessage(f"Internal_Port:{PORT}", level=1)
|
|
|
|
if os.getenv("EX_TB_PORT"):
|
|
EX_TB_PORT = os.environ["EX_TB_PORT"]
|
|
printMessage(f"External_TeonsorBord_Port:{EX_TB_PORT}", level=1)
|
|
|
|
if os.getenv("EX_IP"):
|
|
EX_IP = os.environ["EX_IP"]
|
|
printMessage(f"External_IP:{EX_IP}", level=1)
|
|
|
|
# HTTPS key/cert作成
|
|
if args.https and args.httpsSelfSigned == 1:
|
|
# HTTPS(おれおれ証明書生成)
|
|
os.makedirs("./key", exist_ok=True)
|
|
key_base_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
|
keyname = f"{key_base_name}.key"
|
|
certname = f"{key_base_name}.cert"
|
|
create_self_signed_cert(certname, keyname, certargs={"Country": "JP",
|
|
"State": "Tokyo",
|
|
"City": "Chuo-ku",
|
|
"Organization": "F",
|
|
"Org. Unit": "F"}, cert_dir="./key")
|
|
key_path = os.path.join("./key", keyname)
|
|
cert_path = os.path.join("./key", certname)
|
|
printMessage(
|
|
f"protocol: HTTPS(self-signed), key:{key_path}, cert:{cert_path}", level=1)
|
|
elif args.https and args.httpsSelfSigned == 0:
|
|
# HTTPS
|
|
key_path = args.httpsKey
|
|
cert_path = args.httpsCert
|
|
printMessage(
|
|
f"protocol: HTTPS, key:{key_path}, cert:{cert_path}", level=1)
|
|
else:
|
|
# HTTP
|
|
printMessage(f"protocol: HTTP", level=1)
|
|
|
|
# アドレス表示
|
|
if args.https == 1:
|
|
printMessage(
|
|
f"open https://<IP>:<PORT>/ with your browser.", level=0)
|
|
else:
|
|
printMessage(
|
|
f"open http://<IP>:<PORT>/ with your browser.", level=0)
|
|
|
|
if TYPE == "MMVC":
|
|
path = ""
|
|
else:
|
|
path = "trainer"
|
|
if "EX_PORT" in locals() and "EX_IP" in locals() and args.https == 1:
|
|
printMessage(f"In many cases it is one of the following", level=1)
|
|
printMessage(f"https://localhost:{EX_PORT}/{path}", level=1)
|
|
for ip in EX_IP.strip().split(" "):
|
|
printMessage(f"https://{ip}:{EX_PORT}/{path}", level=1)
|
|
elif "EX_PORT" in locals() and "EX_IP" in locals() and args.https == 0:
|
|
printMessage(f"In many cases it is one of the following", level=1)
|
|
printMessage(f"http://localhost:{EX_PORT}/{path}", level=1)
|
|
|
|
# サーバ起動
|
|
if args.https:
|
|
# HTTPS サーバ起動
|
|
uvicorn.run(
|
|
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
|
host="0.0.0.0",
|
|
port=int(PORT),
|
|
reload=True,
|
|
ssl_keyfile=key_path,
|
|
ssl_certfile=cert_path,
|
|
log_level="critical"
|
|
)
|
|
else:
|
|
# HTTP サーバ起動
|
|
if args.colab == True:
|
|
uvicorn.run(
|
|
f"{os.path.basename(__file__)[:-3]}:app_fastapi",
|
|
host="0.0.0.0",
|
|
port=int(PORT),
|
|
log_level="critical"
|
|
)
|
|
else:
|
|
uvicorn.run(
|
|
f"{os.path.basename(__file__)[:-3]}:app_socketio",
|
|
host="0.0.0.0",
|
|
port=int(PORT),
|
|
reload=True,
|
|
log_level="critical"
|
|
)
|